Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 81

1.

Coincidence time resolution of 30 ps FWHM using a pair of Cherenkov-radiator-integrated MCP-PMTs.

Ota R, Nakajima K, Ogawa I, Tamagawa Y, Shimoi H, Suyama M, Hasegawa T.

Phys Med Biol. 2019 Mar 29;64(7):07LT01. doi: 10.1088/1361-6560/ab0fce.

PMID:
30870825
2.

Expression of alcohol oxidase gene from Ochrobactrum sp. AIU 033 in recombinant Escherichia coli through the twin-arginine translocation pathway.

Matsumura K, Yamada M, Yamashita T, Muto H, Nishiyama KI, Shimoi H, Isobe K.

J Biosci Bioeng. 2019 Jul;128(1):13-21. doi: 10.1016/j.jbiosc.2018.12.012. Epub 2019 Jan 28.

PMID:
30704918
3.

Nutrient Signaling via the TORC1-Greatwall-PP2AB55δ Pathway Is Responsible for the High Initial Rates of Alcoholic Fermentation in Sake Yeast Strains of Saccharomyces cerevisiae.

Watanabe D, Kajihara T, Sugimoto Y, Takagi K, Mizuno M, Zhou Y, Chen J, Takeda K, Tatebe H, Shiozaki K, Nakazawa N, Izawa S, Akao T, Shimoi H, Maeda T, Takagi H.

Appl Environ Microbiol. 2018 Dec 13;85(1). pii: e02083-18. doi: 10.1128/AEM.02083-18. Print 2019 Jan 1.

4.

Meiotic chromosomal recombination defect in sake yeasts.

Shimoi H, Hanazumi Y, Kawamura N, Yamada M, Shimizu S, Suzuki T, Watanabe D, Akao T.

J Biosci Bioeng. 2019 Feb;127(2):190-196. doi: 10.1016/j.jbiosc.2018.07.027. Epub 2018 Sep 1.

PMID:
30181034
5.

Targeted gene replacement at the URA3 locus of the basidiomycetous yeast Pseudozyma antarctica and its transformation using lithium acetate treatment.

Yarimizu T, Shimoi H, Sameshima-Yamashita Y, Morita T, Koike H, Watanabe T, Kitamoto H.

Yeast. 2017 Dec;34(12):483-494. doi: 10.1002/yea.3251. Epub 2017 Sep 21.

6.

Phenotypic Diagnosis of Lineage and Differentiation During Sake Yeast Breeding.

Ohnuki S, Okada H, Friedrich A, Kanno Y, Goshima T, Hasuda H, Inahashi M, Okazaki N, Tamura H, Nakamura R, Hirata D, Fukuda H, Shimoi H, Kitamoto K, Watanabe D, Schacherer J, Akao T, Ohya Y.

G3 (Bethesda). 2017 Aug 7;7(8):2807-2820. doi: 10.1534/g3.117.044099.

7.

Sake yeast YHR032W/ERC1 haplotype contributes to high S-adenosylmethionine accumulation in sake yeast strains.

Kanai M, Kawata T, Yoshida Y, Kita Y, Ogawa T, Mizunuma M, Watanabe D, Shimoi H, Mizuno A, Yamada O, Fujii T, Iefuji H.

J Biosci Bioeng. 2017 Jan;123(1):8-14. doi: 10.1016/j.jbiosc.2016.07.007. Epub 2016 Aug 24.

PMID:
27567046
8.

Identification of a mutation causing a defective spindle assembly checkpoint in high ethyl caproate-producing sake yeast strain K1801.

Goshima T, Nakamura R, Kume K, Okada H, Ichikawa E, Tamura H, Hasuda H, Inahashi M, Okazaki N, Akao T, Shimoi H, Mizunuma M, Ohya Y, Hirata D.

Biosci Biotechnol Biochem. 2016 Aug;80(8):1657-62. doi: 10.1080/09168451.2016.1184963. Epub 2016 May 18.

PMID:
27191586
9.

Inhibitory Role of Greatwall-Like Protein Kinase Rim15p in Alcoholic Fermentation via Upregulating the UDP-Glucose Synthesis Pathway in Saccharomyces cerevisiae.

Watanabe D, Zhou Y, Hirata A, Sugimoto Y, Takagi K, Akao T, Ohya Y, Takagi H, Shimoi H.

Appl Environ Microbiol. 2015 Oct 23;82(1):340-51. doi: 10.1128/AEM.02977-15. Print 2016 Jan 1.

10.

Isolation of a spontaneous cerulenin-resistant sake yeast with both high ethyl caproate-producing ability and normal checkpoint integrity.

Tamura H, Okada H, Kume K, Koyano T, Goshima T, Nakamura R, Akao T, Shimoi H, Mizunuma M, Ohya Y, Hirata D.

Biosci Biotechnol Biochem. 2015;79(7):1191-9. doi: 10.1080/09168451.2015.1020756. Epub 2015 Mar 19.

PMID:
25787154
11.

Awa1p on the cell surface of sake yeast inhibits biofilm formation and the co-aggregation between sake yeasts and Lactobacillus plantarum ML11-11.

Hirayama S, Shimizu M, Tsuchiya N, Furukawa S, Watanabe D, Shimoi H, Takagi H, Ogihara H, Morinaga Y.

J Biosci Bioeng. 2015 May;119(5):532-7. doi: 10.1016/j.jbiosc.2014.10.007. Epub 2014 Nov 7.

PMID:
25454063
12.

Screening of high-level 4-hydroxy-2 (or 5)-ethyl-5 (or 2)-methyl-3(2H)-furanone-producing strains from a collection of gene deletion mutants of Saccharomyces cerevisiae.

Uehara K, Watanabe J, Akao T, Watanabe D, Mogi Y, Shimoi H.

Appl Environ Microbiol. 2015 Jan;81(1):453-60. doi: 10.1128/AEM.02628-14. Epub 2014 Oct 31.

13.

An organic acid-tolerant HAA1-overexpression mutant of an industrial bioethanol strain of Saccharomyces cerevisiae and its application to the production of bioethanol from sugarcane molasses.

Inaba T, Watanabe D, Yoshiyama Y, Tanaka K, Ogawa J, Takagi H, Shimoi H, Shima J.

AMB Express. 2013 Dec 30;3(1):74. doi: 10.1186/2191-0855-3-74.

14.

Accelerated alcoholic fermentation caused by defective gene expression related to glucose derepression in Saccharomyces cerevisiae.

Watanabe D, Hashimoto N, Mizuno M, Zhou Y, Akao T, Shimoi H.

Biosci Biotechnol Biochem. 2013;77(11):2255-62. Epub 2013 Nov 7.

15.
16.

Rim15p-mediated regulation of sucrose utilization during molasses fermentation using Saccharomyces cerevisiae strain PE-2.

Inai T, Watanabe D, Zhou Y, Fukada R, Akao T, Shima J, Takagi H, Shimoi H.

J Biosci Bioeng. 2013 Nov;116(5):591-4. doi: 10.1016/j.jbiosc.2013.05.015. Epub 2013 Jun 10.

PMID:
23757382
17.

The transfer of radioactive cesium and potassium from rice to sake.

Okuda M, Hashiguchi T, Joyo M, Tsukamoto K, Endo M, Matsumaru K, Goto-Yamamoto N, Yamaoka H, Suzuki K, Shimoi H.

J Biosci Bioeng. 2013 Sep;116(3):340-6. doi: 10.1016/j.jbiosc.2013.03.001. Epub 2013 Apr 12.

PMID:
23583500
18.

The transfer of stable ¹³³Cs from rice to Japanese sake.

Okuda M, Joyo M, Tokuoka M, Hashiguchi T, Goto-Yamamoto N, Yamaoka H, Shimoi H.

J Biosci Bioeng. 2012 Dec;114(6):600-5. doi: 10.1016/j.jbiosc.2012.07.003. Epub 2012 Jul 31.

PMID:
22857899
19.

Identification of a gene involved in the synthesis of a dipeptidyl peptidase IV inhibitor in Aspergillus oryzae.

Imamura K, Tsuyama Y, Hirata T, Shiraishi S, Sakamoto K, Yamada O, Akita O, Shimoi H.

Appl Environ Microbiol. 2012 Oct;78(19):6996-7002. doi: 10.1128/AEM.01770-12. Epub 2012 Jul 27.

20.

A loss-of-function mutation in the PAS kinase Rim15p is related to defective quiescence entry and high fermentation rates of Saccharomyces cerevisiae sake yeast strains.

Watanabe D, Araki Y, Zhou Y, Maeya N, Akao T, Shimoi H.

Appl Environ Microbiol. 2012 Jun;78(11):4008-16. doi: 10.1128/AEM.00165-12. Epub 2012 Mar 23.

21.

Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production.

Sasano Y, Watanabe D, Ukibe K, Inai T, Ohtsu I, Shimoi H, Takagi H.

J Biosci Bioeng. 2012 Apr;113(4):451-5. doi: 10.1016/j.jbiosc.2011.11.017. Epub 2011 Dec 16.

PMID:
22178024
22.

Association of constitutive hyperphosphorylation of Hsf1p with a defective ethanol stress response in Saccharomyces cerevisiae sake yeast strains.

Noguchi C, Watanabe D, Zhou Y, Akao T, Shimoi H.

Appl Environ Microbiol. 2012 Jan;78(2):385-92. doi: 10.1128/AEM.06341-11. Epub 2011 Nov 4.

23.

Ethanol fermentation driven by elevated expression of the G1 cyclin gene CLN3 in sake yeast.

Watanabe D, Nogami S, Ohya Y, Kanno Y, Zhou Y, Akao T, Shimoi H.

J Biosci Bioeng. 2011 Dec;112(6):577-82. doi: 10.1016/j.jbiosc.2011.08.010. Epub 2011 Sep 8.

PMID:
21906996
24.

Whole-genome sequencing of sake yeast Saccharomyces cerevisiae Kyokai no. 7.

Akao T, Yashiro I, Hosoyama A, Kitagaki H, Horikawa H, Watanabe D, Akada R, Ando Y, Harashima S, Inoue T, Inoue Y, Kajiwara S, Kitamoto K, Kitamoto N, Kobayashi O, Kuhara S, Masubuchi T, Mizoguchi H, Nakao Y, Nakazato A, Namise M, Oba T, Ogata T, Ohta A, Sato M, Shibasaki S, Takatsume Y, Tanimoto S, Tsuboi H, Nishimura A, Yoda K, Ishikawa T, Iwashita K, Fujita N, Shimoi H.

DNA Res. 2011 Dec;18(6):423-34. doi: 10.1093/dnares/dsr029. Epub 2011 Sep 6.

25.

Automatic measurement of sake fermentation kinetics using a multi-channel gas monitor system.

Watanabe D, Ota T, Nitta F, Akao T, Shimoi H.

J Biosci Bioeng. 2011 Jul;112(1):54-7. doi: 10.1016/j.jbiosc.2011.03.007. Epub 2011 Apr 5.

PMID:
21470907
26.

Sake yeast strains have difficulty in entering a quiescent state after cell growth cessation.

Urbanczyk H, Noguchi C, Wu H, Watanabe D, Akao T, Takagi H, Shimoi H.

J Biosci Bioeng. 2011 Jul;112(1):44-8. doi: 10.1016/j.jbiosc.2011.03.001. Epub 2011 Apr 2.

PMID:
21459038
27.

Enhancement of the initial rate of ethanol fermentation due to dysfunction of yeast stress response components Msn2p and/or Msn4p.

Watanabe D, Wu H, Noguchi C, Zhou Y, Akao T, Shimoi H.

Appl Environ Microbiol. 2011 Feb;77(3):934-41. doi: 10.1128/AEM.01869-10. Epub 2010 Dec 3.

28.

Ileal patch graft used to repair a bladder injured during repair of an abdominal wall hernia.

Miyamoto S, Takushima A, Harii K, Shimoi H, Nutahara K.

Scand J Plast Reconstr Surg Hand Surg. 2010 Feb;44(1):66-8. doi: 10.3109/02844310801939926.

PMID:
20158416
29.

Aspergillus oryzae atfA controls conidial germination and stress tolerance.

Sakamoto K, Iwashita K, Yamada O, Kobayashi K, Mizuno A, Akita O, Mikami S, Shimoi H, Gomi K.

Fungal Genet Biol. 2009 Dec;46(12):887-97. doi: 10.1016/j.fgb.2009.09.004. Epub 2009 Sep 19.

PMID:
19770065
30.

Disruption of ubiquitin-related genes in laboratory yeast strains enhances ethanol production during sake brewing.

Wu H, Watanabe T, Araki Y, Kitagaki H, Akao T, Takagi H, Shimoi H.

J Biosci Bioeng. 2009 Jun;107(6):636-40. doi: 10.1016/j.jbiosc.2009.01.014.

PMID:
19447341
31.

Overexpression of MSN2 in a sake yeast strain promotes ethanol tolerance and increases ethanol production in sake brewing.

Watanabe M, Watanabe D, Akao T, Shimoi H.

J Biosci Bioeng. 2009 May;107(5):516-8. doi: 10.1016/j.jbiosc.2009.01.006.

PMID:
19393550
32.

QTL mapping of sake brewing characteristics of yeast.

Katou T, Namise M, Kitagaki H, Akao T, Shimoi H.

J Biosci Bioeng. 2009 Apr;107(4):383-93. doi: 10.1016/j.jbiosc.2008.12.014.

PMID:
19332297
33.

Ethanol stress stimulates the Ca2+-mediated calcineurin/Crz1 pathway in Saccharomyces cerevisiae.

Araki Y, Wu H, Kitagaki H, Akao T, Takagi H, Shimoi H.

J Biosci Bioeng. 2009 Jan;107(1):1-6. doi: 10.1016/j.jbiosc.2008.09.005.

PMID:
19147100
34.

Brewing characteristics of haploid strains isolated from sake yeast Kyokai No. 7.

Katou T, Kitagaki H, Akao T, Shimoi H.

Yeast. 2008 Nov;25(11):799-807. doi: 10.1002/yea.1634.

35.

Inhibition of mitochondrial fragmentation during sake brewing causes high malate production in sake yeast.

Kitagaki H, Kato T, Isogai A, Mikami S, Shimoi H.

J Biosci Bioeng. 2008 Jun;105(6):675-8. doi: 10.1263/jbb.105.675.

PMID:
18640610
36.

Common industrial sake yeast strains have three copies of the AQY1-ARR3 region of chromosome XVI in their genomes.

Ogihara F, Kitagaki H, Wang Q, Shimoi H.

Yeast. 2008 Jun;25(6):419-32. doi: 10.1002/yea.1596.

37.

Calorimetric study of correlated disordering in [Hdamel]2[Cu(II)(tdpd)2] x 2 THF crystal.

Yamamura Y, Shimoi H, Sumita M, Yasuzuka S, Adachi K, Fuyuhiro A, Kawata S, Saito K.

J Phys Chem A. 2008 May 15;112(19):4465-9. doi: 10.1021/jp710936q. Epub 2008 Apr 9.

PMID:
18396851
38.

Mitochondrial dynamics of yeast during sake brewing.

Kitagaki H, Shimoi H.

J Biosci Bioeng. 2007 Sep;104(3):227-30.

PMID:
17964489
39.

Elevated expression of genes under the control of stress response element (STRE) and Msn2p in an ethanol-tolerance sake yeast Kyokai no. 11.

Watanabe M, Tamura K, Magbanua JP, Takano K, Kitamoto K, Kitagaki H, Akao T, Shimoi H.

J Biosci Bioeng. 2007 Sep;104(3):163-70. Erratum in: J Biosci Bioeng. 2007 Oct;104(4):351.

PMID:
17964478
40.

Ethanol-induced death in yeast exhibits features of apoptosis mediated by mitochondrial fission pathway.

Kitagaki H, Araki Y, Funato K, Shimoi H.

FEBS Lett. 2007 Jun 26;581(16):2935-42. Epub 2007 May 29.

41.

Construction and analysis of self-cloning sake yeasts that accumulate proline.

Takagi H, Matsui F, Kawaguchi A, Wu H, Shimoi H, Kubo Y.

J Biosci Bioeng. 2007 Apr;103(4):377-80.

PMID:
17502281
42.

Global gene expression analysis of yeast cells during sake brewing.

Wu H, Zheng X, Araki Y, Sahara H, Takagi H, Shimoi H.

Appl Environ Microbiol. 2006 Nov;72(11):7353-8. Epub 2006 Sep 22.

43.
44.

Amplified fragment length polymorphism of the AWA1 gene of sake yeasts for identification of sake yeast strains.

Shimizu M, Miyashita K, Kitagaki H, Ito K, Shimoi H.

J Biosci Bioeng. 2005 Dec;100(6):678-80.

PMID:
16473780
45.
46.

High expression of unsaturated fatty acid synthesis gene OLE 1 in sake yeasts.

Yamada T, Shimoi H, Ito K.

J Biosci Bioeng. 2005 May;99(5):512-6.

PMID:
16233825
48.

Cloning and analysis of the AWA1 gene of a nonfoaming mutant of a sake yeast.

Miyashita K, Sakamoto K, Kitagaki H, Iwashita K, Ito K, Shimoi H.

J Biosci Bioeng. 2004;97(1):14-8.

PMID:
16233582
49.

Characterization of an alpha-ketoglutarate-resistant sake yeast mutant with high organic acid productivity.

Yano S, Asano T, Kurose N, Hiramatsu J, Shimoi H, Ito K.

J Biosci Bioeng. 2003;96(4):332-6.

PMID:
16233532

Supplemental Content

Loading ...
Support Center