Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 97

1.

Phase variation in Mycobacterium tuberculosis glpK produces transiently heritable drug tolerance.

Safi H, Gopal P, Lingaraju S, Ma S, Levine C, Dartois V, Yee M, Li L, Blanc L, Ho Liang HP, Husain S, Hoque M, Soteropoulos P, Rustad T, Sherman DR, Dick T, Alland D.

Proc Natl Acad Sci U S A. 2019 Sep 5. pii: 201907631. doi: 10.1073/pnas.1907631116. [Epub ahead of print]

PMID:
31488707
2.

Diverse Clinical Isolates of Mycobacterium tuberculosis Develop Macrophage-Induced Rifampin Tolerance.

Adams KN, Verma AK, Gopalaswamy R, Adikesavalu H, Singhal DK, Tripathy S, Ranganathan UD, Sherman DR, Urdahl KB, Ramakrishnan L, Hernandez RE.

J Infect Dis. 2019 Apr 19;219(10):1554-1558. doi: 10.1093/infdis/jiy710. Erratum in: J Infect Dis. 2019 Jun 19;220(2):342.

3.

Inhibiting the Evolution of Antibiotic Resistance.

Ragheb MN, Thomason MK, Hsu C, Nugent P, Gage J, Samadpour AN, Kariisa A, Merrikh CN, Miller SI, Sherman DR, Merrikh H.

Mol Cell. 2019 Jan 3;73(1):157-165.e5. doi: 10.1016/j.molcel.2018.10.015. Epub 2018 Nov 15.

4.

Bacterial Factors That Predict Relapse after Tuberculosis Therapy.

Colangeli R, Jedrey H, Kim S, Connell R, Ma S, Chippada Venkata UD, Chakravorty S, Gupta A, Sizemore EE, Diem L, Sherman DR, Okwera A, Dietze R, Boom WH, Johnson JL, Mac Kenzie WR, Alland D; DMID 01-009/Tuberculosis Trials Consortium Study 22 Teams.

N Engl J Med. 2018 Aug 30;379(9):823-833. doi: 10.1056/NEJMoa1715849.

5.

Alveolar Macrophages Provide an Early Mycobacterium tuberculosis Niche and Initiate Dissemination.

Cohen SB, Gern BH, Delahaye JL, Adams KN, Plumlee CR, Winkler JK, Sherman DR, Gerner MY, Urdahl KB.

Cell Host Microbe. 2018 Sep 12;24(3):439-446.e4. doi: 10.1016/j.chom.2018.08.001. Epub 2018 Aug 23.

6.

Incipient and Subclinical Tuberculosis: a Clinical Review of Early Stages and Progression of Infection.

Drain PK, Bajema KL, Dowdy D, Dheda K, Naidoo K, Schumacher SG, Ma S, Meermeier E, Lewinsohn DM, Sherman DR.

Clin Microbiol Rev. 2018 Jul 18;31(4). pii: e00021-18. doi: 10.1128/CMR.00021-18. Print 2018 Oct. Review.

7.

Cell envelope stress in mycobacteria is regulated by the novel signal transduction ATPase IniR in response to trehalose.

Boot M, van Winden VJC, Sparrius M, van de Weerd R, Speer A, Ummels R, Rustad T, Sherman DR, Bitter W.

PLoS Genet. 2017 Dec 27;13(12):e1007131. doi: 10.1371/journal.pgen.1007131. eCollection 2017 Dec.

8.

Comprehensive definition of human immunodominant CD8 antigens in tuberculosis.

Lewinsohn DA, Swarbrick GM, Park B, Cansler ME, Null MD, Toren KG, Baseke J, Zalwango S, Mayanja-Kizza H, Malone LL, Nyendak M, Wu G, Guinn K, McWeeney S, Mori T, Chervenak KA, Sherman DR, Boom WH, Lewinsohn DM.

NPJ Vaccines. 2017;2. pii: 8. doi: 10.1038/s41541-017-0008-6. Epub 2017 Apr 3.

9.

Antigen Availability Shapes T Cell Differentiation and Function during Tuberculosis.

Moguche AO, Musvosvi M, Penn-Nicholson A, Plumlee CR, Mearns H, Geldenhuys H, Smit E, Abrahams D, Rozot V, Dintwe O, Hoff ST, Kromann I, Ruhwald M, Bang P, Larson RP, Shafiani S, Ma S, Sherman DR, Sette A, Lindestam Arlehamn CS, McKinney DM, Maecker H, Hanekom WA, Hatherill M, Andersen P, Scriba TJ, Urdahl KB.

Cell Host Microbe. 2017 Jun 14;21(6):695-706.e5. doi: 10.1016/j.chom.2017.05.012.

10.

An attenuated Mycobacterium tuberculosis clinical strain with a defect in ESX-1 secretion induces minimal host immune responses and pathology.

Clemmensen HS, Knudsen NPH, Rasmussen EM, Winkler J, Rosenkrands I, Ahmad A, Lillebaek T, Sherman DR, Andersen PL, Aagaard C.

Sci Rep. 2017 Apr 24;7:46666. doi: 10.1038/srep46666.

11.

Transcriptional networks are associated with resistance to Mycobacterium tuberculosis infection.

Seshadri C, Sedaghat N, Campo M, Peterson G, Wells RD, Olson GS, Sherman DR, Stein CM, Mayanja-Kizza H, Shojaie A, Boom WH, Hawn TR; Tuberculosis Research Unit (TBRU).

PLoS One. 2017 Apr 17;12(4):e0175844. doi: 10.1371/journal.pone.0175844. eCollection 2017.

12.

Network analysis identifies Rv0324 and Rv0880 as regulators of bedaquiline tolerance in Mycobacterium tuberculosis.

Peterson EJR, Ma S, Sherman DR, Baliga NS.

Nat Microbiol. 2016 Jun 6;1(8):16078. doi: 10.1038/nmicrobiol.2016.78.

13.

Nonpathogenic SIV and Pathogenic HIV Infections Associate with Disparate Innate Cytokine Signatures in Response to Mycobacterium bovis BCG.

Gasper MA, Biswas SP, Fisher BS, Ehnert SC, Sherman DR, Sodora DL.

PLoS One. 2016 Aug 9;11(8):e0158149. doi: 10.1371/journal.pone.0158149. eCollection 2016.

14.

Towards understanding the biological function of the unusual chaperonin Cpn60.1 (GroEL1) of Mycobacterium tuberculosis.

Sharma A, Rustad T, Mahajan G, Kumar A, Rao KV, Banerjee S, Sherman DR, Mande SC.

Tuberculosis (Edinb). 2016 Mar;97:137-46. doi: 10.1016/j.tube.2015.11.003. Epub 2015 Dec 12.

PMID:
26822628
15.

A Focused Screen Identifies Antifolates with Activity on Mycobacterium tuberculosis.

Kumar A, Guardia A, Colmenarejo G, Pérez E, Gonzalez RR, Torres P, Calvo D, Gómez RM, Ortega F, Jiménez E, Gabarro RC, Rullás J, Ballell L, Sherman DR.

ACS Infect Dis. 2015 Dec 11;1(12):604-14. doi: 10.1021/acsinfecdis.5b00063. Epub 2015 Aug 12.

16.

Integrated Modeling of Gene Regulatory and Metabolic Networks in Mycobacterium tuberculosis.

Ma S, Minch KJ, Rustad TR, Hobbs S, Zhou SL, Sherman DR, Price ND.

PLoS Comput Biol. 2015 Nov 30;11(11):e1004543. doi: 10.1371/journal.pcbi.1004543. eCollection 2015 Nov.

17.

A comprehensive map of genome-wide gene regulation in Mycobacterium tuberculosis.

Turkarslan S, Peterson EJ, Rustad TR, Minch KJ, Reiss DJ, Morrison R, Ma S, Price ND, Sherman DR, Baliga NS.

Sci Data. 2015 Mar 31;2:150010. doi: 10.1038/sdata.2015.10. eCollection 2015.

18.

Identification of novel Mycobacterium tuberculosis CD4 T-cell antigens via high throughput proteome screening.

Nayak K, Jing L, Russell RM, Davies DH, Hermanson G, Molina DM, Liang X, Sherman DR, Kwok WW, Yang J, Kenneth J, Ahamed SF, Chandele A, Murali-Krishna K, Koelle DM.

Tuberculosis (Edinb). 2015 May;95(3):275-87. doi: 10.1016/j.tube.2015.03.001. Epub 2015 Mar 27.

19.

The DosR Regulon Modulates Adaptive Immunity and Is Essential for Mycobacterium tuberculosis Persistence.

Mehra S, Foreman TW, Didier PJ, Ahsan MH, Hudock TA, Kissee R, Golden NA, Gautam US, Johnson AM, Alvarez X, Russell-Lodrigue KE, Doyle LA, Roy CJ, Niu T, Blanchard JL, Khader SA, Lackner AA, Sherman DR, Kaushal D.

Am J Respir Crit Care Med. 2015 May 15;191(10):1185-96. doi: 10.1164/rccm.201408-1502OC.

20.

The DNA-binding network of Mycobacterium tuberculosis.

Minch KJ, Rustad TR, Peterson EJ, Winkler J, Reiss DJ, Ma S, Hickey M, Brabant W, Morrison B, Turkarslan S, Mawhinney C, Galagan JE, Price ND, Baliga NS, Sherman DR.

Nat Commun. 2015 Jan 12;6:5829. doi: 10.1038/ncomms6829.

21.

Mapping and manipulating the Mycobacterium tuberculosis transcriptome using a transcription factor overexpression-derived regulatory network.

Rustad TR, Minch KJ, Ma S, Winkler JK, Hobbs S, Hickey M, Brabant W, Turkarslan S, Price ND, Baliga NS, Sherman DR.

Genome Biol. 2014;15(11):502.

22.

DosS Is required for the complete virulence of mycobacterium tuberculosis in mice with classical granulomatous lesions.

Gautam US, McGillivray A, Mehra S, Didier PJ, Midkiff CC, Kissee RS, Golden NA, Alvarez X, Niu T, Rengarajan J, Sherman DR, Kaushal D.

Am J Respir Cell Mol Biol. 2015 Jun;52(6):708-16. doi: 10.1165/rcmb.2014-0230OC.

23.

Mycobacterium tuberculosis strains lacking surface lipid phthiocerol dimycocerosate are susceptible to killing by an early innate host response.

Day TA, Mittler JE, Nixon MR, Thompson C, Miner MD, Hickey MJ, Liao RP, Pang JM, Shayakhmetov DM, Sherman DR.

Infect Immun. 2014 Dec;82(12):5214-22. doi: 10.1128/IAI.01340-13. Epub 2014 Oct 6.

24.

A high-resolution network model for global gene regulation in Mycobacterium tuberculosis.

Peterson EJ, Reiss DJ, Turkarslan S, Minch KJ, Rustad T, Plaisier CL, Longabaugh WJ, Sherman DR, Baliga NS.

Nucleic Acids Res. 2014 Oct;42(18):11291-303. doi: 10.1093/nar/gku777. Epub 2014 Sep 17.

25.

Agents of change - concepts in Mycobacterium tuberculosis Ser/Thr/Tyr phosphosignalling.

Sherman DR, Grundner C.

Mol Microbiol. 2014 Oct;94(2):231-41. doi: 10.1111/mmi.12747. Epub 2014 Aug 25. Review.

26.

Folate pathway disruption leads to critical disruption of methionine derivatives in Mycobacterium tuberculosis.

Nixon MR, Saionz KW, Koo MS, Szymonifka MJ, Jung H, Roberts JP, Nandakumar M, Kumar A, Liao R, Rustad T, Sacchettini JC, Rhee KY, Freundlich JS, Sherman DR.

Chem Biol. 2014 Jul 17;21(7):819-30. doi: 10.1016/j.chembiol.2014.04.009. Epub 2014 Jun 19.

27.

Mycobacterium tuberculosis supports protein tyrosine phosphorylation.

Kusebauch U, Ortega C, Ollodart A, Rogers RS, Sherman DR, Moritz RL, Grundner C.

Proc Natl Acad Sci U S A. 2014 Jun 24;111(25):9265-70. doi: 10.1073/pnas.1323894111. Epub 2014 Jun 9.

28.

Mycobacterium tuberculosis Ser/Thr protein kinase B mediates an oxygen-dependent replication switch.

Ortega C, Liao R, Anderson LN, Rustad T, Ollodart AR, Wright AT, Sherman DR, Grundner C.

PLoS Biol. 2014 Jan;12(1):e1001746. doi: 10.1371/journal.pbio.1001746. Epub 2014 Jan 7.

29.

Osmosensory signaling in Mycobacterium tuberculosis mediated by a eukaryotic-like Ser/Thr protein kinase.

Hatzios SK, Baer CE, Rustad TR, Siegrist MS, Pang JM, Ortega C, Alber T, Grundner C, Sherman DR, Bertozzi CR.

Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):E5069-77. doi: 10.1073/pnas.1321205110. Epub 2013 Dec 5.

30.

A high-throughput screen against pantothenate synthetase (PanC) identifies 3-biphenyl-4-cyanopyrrole-2-carboxylic acids as a new class of inhibitor with activity against Mycobacterium tuberculosis.

Kumar A, Casey A, Odingo J, Kesicki EA, Abrahams G, Vieth M, Masquelin T, Mizrahi V, Hipskind PA, Sherman DR, Parish T.

PLoS One. 2013 Nov 7;8(11):e72786. doi: 10.1371/journal.pone.0072786. eCollection 2013.

31.

Identification of new drug targets and resistance mechanisms in Mycobacterium tuberculosis.

Ioerger TR, O'Malley T, Liao R, Guinn KM, Hickey MJ, Mohaideen N, Murphy KC, Boshoff HI, Mizrahi V, Rubin EJ, Sassetti CM, Barry CE 3rd, Sherman DR, Parish T, Sacchettini JC.

PLoS One. 2013 Sep 23;8(9):e75245. doi: 10.1371/journal.pone.0075245. eCollection 2013.

32.

The Mycobacterium tuberculosis regulatory network and hypoxia.

Galagan JE, Minch K, Peterson M, Lyubetskaya A, Azizi E, Sweet L, Gomes A, Rustad T, Dolganov G, Glotova I, Abeel T, Mahwinney C, Kennedy AD, Allard R, Brabant W, Krueger A, Jaini S, Honda B, Yu WH, Hickey MJ, Zucker J, Garay C, Weiner B, Sisk P, Stolte C, Winkler JK, Van de Peer Y, Iazzetti P, Camacho D, Dreyfuss J, Liu Y, Dorhoi A, Mollenkopf HJ, Drogaris P, Lamontagne J, Zhou Y, Piquenot J, Park ST, Raman S, Kaufmann SH, Mohney RP, Chelsky D, Moody DB, Sherman DR, Schoolnik GK.

Nature. 2013 Jul 11;499(7457):178-83. doi: 10.1038/nature12337. Epub 2013 Jul 3.

33.

Human Mycobacterium tuberculosis CD8 T Cell Antigens/Epitopes Identified by a Proteomic Peptide Library.

Lewinsohn DM, Swarbrick GM, Cansler ME, Null MD, Rajaraman V, Frieder MM, Sherman DR, McWeeney S, Lewinsohn DA.

PLoS One. 2013 Jun 21;8(6):e67016. doi: 10.1371/journal.pone.0067016. Print 2013.

34.

Bioinformatic and empirical analysis of novel hypoxia-inducible targets of the human antituberculosis T cell response.

Gideon HP, Wilkinson KA, Rustad TR, Oni T, Guio H, Sherman DR, Vordermeier HM, Robertson BD, Young DB, Wilkinson RJ.

J Immunol. 2012 Dec 15;189(12):5867-76. doi: 10.4049/jimmunol.1202281. Epub 2012 Nov 19.

35.

Global analysis of mRNA stability in Mycobacterium tuberculosis.

Rustad TR, Minch KJ, Brabant W, Winkler JK, Reiss DJ, Baliga NS, Sherman DR.

Nucleic Acids Res. 2013 Jan 7;41(1):509-17. doi: 10.1093/nar/gks1019. Epub 2012 Nov 3.

36.

Early secreted antigenic target of 6-kDa protein of Mycobacterium tuberculosis primes dendritic cells to stimulate Th17 and inhibit Th1 immune responses.

Wang X, Barnes PF, Huang F, Alvarez IB, Neuenschwander PF, Sherman DR, Samten B.

J Immunol. 2012 Sep 15;189(6):3092-103. doi: 10.4049/jimmunol.1200573. Epub 2012 Aug 17.

37.

Pathway-selective sensitization of Mycobacterium tuberculosis for target-based whole-cell screening.

Abrahams GL, Kumar A, Savvi S, Hung AW, Wen S, Abell C, Barry CE 3rd, Sherman DR, Boshoff HI, Mizrahi V.

Chem Biol. 2012 Jul 27;19(7):844-54. doi: 10.1016/j.chembiol.2012.05.020.

38.

High-throughput screening and sensitized bacteria identify an M. tuberculosis dihydrofolate reductase inhibitor with whole cell activity.

Kumar A, Zhang M, Zhu L, Liao RP, Mutai C, Hafsat S, Sherman DR, Wang MW.

PLoS One. 2012;7(6):e39961. doi: 10.1371/journal.pone.0039961. Epub 2012 Jun 29.

39.

Mycobacterium tuberculosis growth following aerobic expression of the DosR regulon.

Minch K, Rustad T, Sherman DR.

PLoS One. 2012;7(4):e35935. doi: 10.1371/journal.pone.0035935. Epub 2012 Apr 27.

40.

The multistage vaccine H56 boosts the effects of BCG to protect cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection.

Lin PL, Dietrich J, Tan E, Abalos RM, Burgos J, Bigbee C, Bigbee M, Milk L, Gideon HP, Rodgers M, Cochran C, Guinn KM, Sherman DR, Klein E, Janssen C, Flynn JL, Andersen P.

J Clin Invest. 2012 Jan;122(1):303-14. doi: 10.1172/JCI46252. Epub 2011 Dec 1.

41.

The polyketide Pks1 contributes to biofilm formation in Mycobacterium tuberculosis.

Pang JM, Layre E, Sweet L, Sherrid A, Moody DB, Ojha A, Sherman DR.

J Bacteriol. 2012 Feb;194(3):715-21. doi: 10.1128/JB.06304-11. Epub 2011 Nov 28.

42.

Pathway profiling in Mycobacterium tuberculosis: elucidation of cholesterol-derived catabolite and enzymes that catalyze its metabolism.

Thomas ST, VanderVen BC, Sherman DR, Russell DG, Sampson NS.

J Biol Chem. 2011 Dec 23;286(51):43668-78. doi: 10.1074/jbc.M111.313643. Epub 2011 Nov 1.

43.

Immune responses to the enduring hypoxic response antigen Rv0188 are preferentially detected in Mycobacterium bovis infected cattle with low pathology.

Jones GJ, Pirson C, Gideon HP, Wilkinson KA, Sherman DR, Wilkinson RJ, Hewinson RG, Vordermeier HM.

PLoS One. 2011;6(6):e21371. doi: 10.1371/journal.pone.0021371. Epub 2011 Jun 21.

44.

Estimating the mutation rate of Mycobacterium tuberculosis during infection.

Sherman DR, Gagneux S.

Nat Genet. 2011 May;43(5):400-1. doi: 10.1038/ng.815. No abstract available.

PMID:
21522177
45.

Hypoxia induces an immunodominant target of tuberculosis specific T cells absent from common BCG vaccines.

Gideon HP, Wilkinson KA, Rustad TR, Oni T, Guio H, Kozak RA, Sherman DR, Meintjes G, Behr MA, Vordermeier HM, Young DB, Wilkinson RJ.

PLoS Pathog. 2010 Dec 23;6(12):e1001237. doi: 10.1371/journal.ppat.1001237.

46.

Region of difference 2 contributes to virulence of Mycobacterium tuberculosis.

Kozak RA, Alexander DC, Liao R, Sherman DR, Behr MA.

Infect Immun. 2011 Jan;79(1):59-66. doi: 10.1128/IAI.00824-10. Epub 2010 Oct 25.

47.

Characterization of a Clp protease gene regulator and the reaeration response in Mycobacterium tuberculosis.

Sherrid AM, Rustad TR, Cangelosi GA, Sherman DR.

PLoS One. 2010 Jul 16;5(7):e11622. doi: 10.1371/journal.pone.0011622.

48.

A blind deconvolution approach to high-resolution mapping of transcription factor binding sites from ChIP-seq data.

Lun DS, Sherrid A, Weiner B, Sherman DR, Galagan JE.

Genome Biol. 2009;10(12):R142. doi: 10.1186/gb-2009-10-12-r142. Epub 2009 Dec 22.

49.

Systematic genetic nomenclature for type VII secretion systems.

Bitter W, Houben EN, Bottai D, Brodin P, Brown EJ, Cox JS, Derbyshire K, Fortune SM, Gao LY, Liu J, Gey van Pittius NC, Pym AS, Rubin EJ, Sherman DR, Cole ST, Brosch R.

PLoS Pathog. 2009 Oct;5(10):e1000507. doi: 10.1371/journal.ppat.1000507. Epub 2009 Oct 30. No abstract available.

50.

Role of cholesterol in Mycobacterium tuberculosis infection.

Miner MD, Chang JC, Pandey AK, Sassetti CM, Sherman DR.

Indian J Exp Biol. 2009 Jun;47(6):407-11. Review.

PMID:
19634704

Supplemental Content

Loading ...
Support Center