Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 37

1.

Corrigendum to "Gold nanoparticle conjugated Rad6 inhibitor induces cell death in triple negative breast cancer cells by inducing mitochondrial dysfunction and PARP-1 hyperactivation: Synthesis and characterization" [Nanomedicine 12 (3) (2016), 745-757].

Haynes B, Zhang Y, Liu F, Li J, Petit S, Kothayer H, Bao X, Westwell AD, Mao G, Shekhar MP.

Nanomedicine. 2019 Jun;18:426. doi: 10.1016/j.nano.2019.01.005. Epub 2019 Feb 3. No abstract available.

PMID:
30726707
2.

Erratum: Functional analysis of MKP-1 and MKP-2 in breast cancer tamoxifen sensitivity.

Haagenson KK, Zhang JW, Xu Z, Shekhar MPV, Wu GS.

Oncotarget. 2018 Oct 16;9(81):35286. doi: 10.18632/oncotarget.26258. eCollection 2018 Oct 16.

3.

Nano-delivery of RAD6/Translesion Synthesis Inhibitor SMI#9 for Triple-negative Breast Cancer Therapy.

Saadat N, Liu F, Haynes B, Nangia-Makker P, Bao X, Li J, Polin LA, Gupta S, Mao G, Shekhar MP.

Mol Cancer Ther. 2018 Dec;17(12):2586-2597. doi: 10.1158/1535-7163.MCT-18-0364. Epub 2018 Sep 21.

PMID:
30242094
4.

Breast cancer complexity: implications of intratumoral heterogeneity in clinical management.

Haynes B, Sarma A, Nangia-Makker P, Shekhar MP.

Cancer Metastasis Rev. 2017 Sep;36(3):547-555. doi: 10.1007/s10555-017-9684-y. Review.

5.

Pharmacological targeting of RAD6 enzyme-mediated translesion synthesis overcomes resistance to platinum-based drugs.

Sanders MA, Haynes B, Nangia-Makker P, Polin LA, Shekhar MP.

J Biol Chem. 2017 Jun 23;292(25):10347-10363. doi: 10.1074/jbc.M117.792192. Epub 2017 May 10.

6.

Gold nanoparticle conjugated Rad6 inhibitor induces cell death in triple negative breast cancer cells by inducing mitochondrial dysfunction and PARP-1 hyperactivation: Synthesis and characterization.

Haynes B, Zhang Y, Liu F, Li J, Petit S, Kothayer H, Bao X, Westwell AD, Mao G, Shekhar MPV.

Nanomedicine. 2016 Apr;12(3):745-757. doi: 10.1016/j.nano.2015.10.010. Epub 2015 Nov 10. Erratum in: Nanomedicine. 2019 Jun;18:426.

7.

Crosstalk between translesion synthesis, Fanconi anemia network, and homologous recombination repair pathways in interstrand DNA crosslink repair and development of chemoresistance.

Haynes B, Saadat N, Myung B, Shekhar MP.

Mutat Res Rev Mutat Res. 2015 Jan-Mar;763:258-66. doi: 10.1016/j.mrrev.2014.11.005. Epub 2014 Nov 20. Review.

8.

Melanoma Development and Progression Are Associated with Rad6 Upregulation and β -Catenin Relocation to the Cell Membrane.

Rosner K, Mehregan DR, Kirou E, Abrams J, Kim S, Campbell M, Frieder J, Lawrence K, Haynes B, Shekhar MP.

J Skin Cancer. 2014;2014:439205. doi: 10.1155/2014/439205. Epub 2014 May 6.

9.

Rad6 is a Potential Early Marker of Melanoma Development.

Rosner K, Adsule S, Haynes B, Kirou E, Kato I, Mehregan DR, Shekhar MP.

Transl Oncol. 2014 May 12. pii: S1936-5233(14)00044-8. doi: 10.1016/j.tranon.2014.04.009. [Epub ahead of print]

10.

Functional analysis of MKP-1 and MKP-2 in breast cancer tamoxifen sensitivity.

Haagenson KK, Zhang JW, Xu Z, Shekhar MP, Wu GS.

Oncotarget. 2014 Feb 28;5(4):1101-10. Erratum in: Oncotarget. 2018 Oct 16;9(81):35286.

11.

Design, synthesis and in vitro anticancer evaluation of 4,6-diamino-1,3,5-triazine-2-carbohydrazides and -carboxamides.

Kothayer H, Elshanawani AA, Abu Kull ME, El-Sabbagh OI, Shekhar MP, Brancale A, Jones AT, Westwell AD.

Bioorg Med Chem Lett. 2013 Dec 15;23(24):6886-9. doi: 10.1016/j.bmcl.2013.09.087. Epub 2013 Oct 6.

PMID:
24153206
12.
13.

Ocimum gratissimum retards breast cancer growth and progression and is a natural inhibitor of matrix metalloproteases.

Nangia-Makker P, Raz T, Tait L, Shekhar MP, Li H, Balan V, Makker H, Fridman R, Maddipati K, Raz A.

Cancer Biol Ther. 2013 May;14(5):417-27. doi: 10.4161/cbt.23762. Epub 2013 Feb 4.

14.

Novel inhibitors of Rad6 ubiquitin conjugating enzyme: design, synthesis, identification, and functional characterization.

Sanders MA, Brahemi G, Nangia-Makker P, Balan V, Morelli M, Kothayer H, Westwell AD, Shekhar MPV.

Mol Cancer Ther. 2013 Apr;12(4):373-83. doi: 10.1158/1535-7163.MCT-12-0793. Epub 2013 Jan 21.

15.

Cullin-3 protein expression levels correlate with breast cancer progression.

Haagenson KK, Tait L, Wang J, Shekhar MP, Polin L, Chen W, Wu GS.

Cancer Biol Ther. 2012 Sep;13(11):1042-6. doi: 10.4161/cbt.21046. Epub 2012 Jul 24.

16.

Lysine 394 is a novel Rad6B-induced ubiquitination site on beta-catenin.

Gerard B, Sanders MA, Visscher DW, Tait L, Shekhar MP.

Biochim Biophys Acta. 2012 Oct;1823(10):1686-96. doi: 10.1016/j.bbamcr.2012.05.032. Epub 2012 Jun 15. Erratum in: Biochim Biophys Acta. 2013 May;1833(5):1280-1.

17.

Rad6B acts downstream of Wnt signaling to stabilize β-catenin: Implications for a novel Wnt/β-catenin target.

Gerard B, Tait L, Nangia-Makker P, Shekhar MP.

J Mol Signal. 2011 Jul 18;6:6. doi: 10.1186/1750-2187-6-6.

18.

Drug resistance: challenges to effective therapy.

Shekhar MP.

Curr Cancer Drug Targets. 2011 Jun;11(5):613-23. Review.

PMID:
21486215
19.

Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance.

Khdair A, Chen D, Patil Y, Ma L, Dou QP, Shekhar MP, Panyam J.

J Control Release. 2010 Jan 25;141(2):137-44. doi: 10.1016/j.jconrel.2009.09.004. Epub 2009 Sep 11.

20.

Utility of DNA postreplication repair protein Rad6B in neoadjuvant chemotherapy response.

Shekhar MP, Biernat LA, Pernick N, Tait L, Abrams J, Visscher DW.

Med Oncol. 2010 Jun;27(2):466-73. doi: 10.1007/s12032-009-9235-7. Epub 2009 May 23.

PMID:
19466589
21.

Genome based cell population heterogeneity promotes tumorigenicity: the evolutionary mechanism of cancer.

Ye CJ, Stevens JB, Liu G, Bremer SW, Jaiswal AS, Ye KJ, Lin MF, Lawrenson L, Lancaster WD, Kurkinen M, Liao JD, Gairola CG, Shekhar MP, Narayan S, Miller FR, Heng HH.

J Cell Physiol. 2009 May;219(2):288-300. doi: 10.1002/jcp.21663.

22.

Comedo-ductal carcinoma in situ: A paradoxical role for programmed cell death.

Shekhar MP, Tait L, Pauley RJ, Wu GS, Santner SJ, Nangia-Makker P, Shekhar V, Nassar H, Visscher DW, Heppner GH, Miller FR.

Cancer Biol Ther. 2008 Nov;7(11):1774-82. Epub 2008 Nov 12.

23.

Surfactant-polymer nanoparticles enhance the effectiveness of anticancer photodynamic therapy.

Khdair A, Gerard B, Handa H, Mao G, Shekhar MP, Panyam J.

Mol Pharm. 2008 Sep-Oct;5(5):795-807. doi: 10.1021/mp800026t. Epub 2008 Jul 23.

PMID:
18646775
24.

Rad6B is a positive regulator of beta-catenin stabilization.

Shekhar MP, Gerard B, Pauley RJ, Williams BO, Tait L.

Cancer Res. 2008 Mar 15;68(6):1741-50. doi: 10.1158/0008-5472.CAN-07-2111.

25.

Surfactant-polymer nanoparticles overcome P-glycoprotein-mediated drug efflux.

Chavanpatil MD, Khdair A, Gerard B, Bachmeier C, Miller DW, Shekhar MP, Panyam J.

Mol Pharm. 2007 Sep-Oct;4(5):730-8. Epub 2007 Aug 18.

PMID:
17705442
26.

Direct involvement of breast tumor fibroblasts in the modulation of tamoxifen sensitivity.

Shekhar MP, Santner S, Carolin KA, Tait L.

Am J Pathol. 2007 May;170(5):1546-60.

27.

Inhibition of breast tumor growth and angiogenesis by a medicinal herb: Ocimum gratissimum.

Nangia-Makker P, Tait L, Shekhar MP, Palomino E, Hogan V, Piechocki MP, Funasaka T, Raz A.

Int J Cancer. 2007 Aug 15;121(4):884-94.

29.

Proteomic analysis of estrogen response of premalignant human breast cells using a 2-D liquid separation/mass mapping technique.

Zhao J, Zhu K, Lubman DM, Miller FR, Shekhar MP, Gerard B, Barder TJ.

Proteomics. 2006 Jul;6(13):3847-61.

32.
33.
34.

Rad6 overexpression induces multinucleation, centrosome amplification, abnormal mitosis, aneuploidy, and transformation.

Shekhar MP, Lyakhovich A, Visscher DW, Heng H, Kondrat N.

Cancer Res. 2002 Apr 1;62(7):2115-24.

35.
37.

Direct action of estrogen on sequence of progression of human preneoplastic breast disease.

Shekhar MP, Nangia-Makker P, Wolman SR, Tait L, Heppner GH, Visscher DW.

Am J Pathol. 1998 May;152(5):1129-32.

Supplemental Content

Loading ...
Support Center