Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 36

1.

Structural consequence of the most frequently recurring cancer-associated substitution in DNA polymerase ε.

Parkash V, Kulkarni Y, Ter Beek J, Shcherbakova PV, Kamerlin SCL, Johansson E.

Nat Commun. 2019 Jan 22;10(1):373. doi: 10.1038/s41467-018-08114-9.

2.

A recurrent cancer-associated substitution in DNA polymerase ε produces a hyperactive enzyme.

Xing X, Kane DP, Bulock CR, Moore EA, Sharma S, Chabes A, Shcherbakova PV.

Nat Commun. 2019 Jan 22;10(1):374. doi: 10.1038/s41467-018-08145-2.

3.

Functional Analysis of Cancer-Associated DNA Polymerase ε Variants in Saccharomyces cerevisiae.

Barbari SR, Kane DP, Moore EA, Shcherbakova PV.

G3 (Bethesda). 2018 Mar 2;8(3):1019-1029. doi: 10.1534/g3.118.200042.

4.

Replicative DNA polymerase defects in human cancers: Consequences, mechanisms, and implications for therapy.

Barbari SR, Shcherbakova PV.

DNA Repair (Amst). 2017 Aug;56:16-25. doi: 10.1016/j.dnarep.2017.06.003. Epub 2017 Jun 9. Review.

5.

Nucleotide selectivity defect and mutator phenotype conferred by a colon cancer-associated DNA polymerase δ mutation in human cells.

Mertz TM, Baranovskiy AG, Wang J, Tahirov TH, Shcherbakova PV.

Oncogene. 2017 Aug;36(31):4427-4433. doi: 10.1038/onc.2017.22. Epub 2017 Apr 3.

6.

Yeast DNA polymerase ζ maintains consistent activity and mutagenicity across a wide range of physiological dNTP concentrations.

Kochenova OV, Bezalel-Buch R, Tran P, Makarova AV, Chabes A, Burgers PM, Shcherbakova PV.

Nucleic Acids Res. 2017 Feb 17;45(3):1200-1218. doi: 10.1093/nar/gkw1149.

7.

Colon cancer-associated mutator DNA polymerase δ variant causes expansion of dNTP pools increasing its own infidelity.

Mertz TM, Sharma S, Chabes A, Shcherbakova PV.

Proc Natl Acad Sci U S A. 2015 May 12;112(19):E2467-76. doi: 10.1073/pnas.1422934112. Epub 2015 Mar 31.

8.

DNA polymerase ζ-dependent lesion bypass in Saccharomyces cerevisiae is accompanied by error-prone copying of long stretches of adjacent DNA.

Kochenova OV, Daee DL, Mertz TM, Shcherbakova PV.

PLoS Genet. 2015 Mar 31;11(3):e1005110. doi: 10.1371/journal.pgen.1005110. eCollection 2015 Mar.

9.

A common cancer-associated DNA polymerase ε mutation causes an exceptionally strong mutator phenotype, indicating fidelity defects distinct from loss of proofreading.

Kane DP, Shcherbakova PV.

Cancer Res. 2014 Apr 1;74(7):1895-901. doi: 10.1158/0008-5472.CAN-13-2892. Epub 2014 Feb 13.

10.

A reversible histone H3 acetylation cooperates with mismatch repair and replicative polymerases in maintaining genome stability.

Kadyrova LY, Mertz TM, Zhang Y, Northam MR, Sheng Z, Lobachev KS, Shcherbakova PV, Kadyrov FA.

PLoS Genet. 2013 Oct;9(10):e1003899. doi: 10.1371/journal.pgen.1003899. Epub 2013 Oct 24.

11.

DNA polymerases ζ and Rev1 mediate error-prone bypass of non-B DNA structures.

Northam MR, Moore EA, Mertz TM, Binz SK, Stith CM, Stepchenkova EI, Wendt KL, Burgers PM, Shcherbakova PV.

Nucleic Acids Res. 2014 Jan;42(1):290-306. doi: 10.1093/nar/gkt830. Epub 2013 Sep 18.

12.

Role of DNA polymerases in repeat-mediated genome instability.

Shah KA, Shishkin AA, Voineagu I, Pavlov YI, Shcherbakova PV, Mirkin SM.

Cell Rep. 2012 Nov 29;2(5):1088-95. doi: 10.1016/j.celrep.2012.10.006. Epub 2012 Nov 8.

13.
14.

Participation of translesion synthesis DNA polymerases in the maintenance of chromosome integrity in yeast Saccharomyces cerevisiae.

Kochenova OV, Soshkina JV, Stepchenkova EI, Inge-Vechtomov SG, Shcherbakova PV.

Biochemistry (Mosc). 2011 Jan;76(1):49-60.

15.

A cancer-associated DNA polymerase delta variant modeled in yeast causes a catastrophic increase in genomic instability.

Daee DL, Mertz TM, Shcherbakova PV.

Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):157-62. doi: 10.1073/pnas.0907526106. Epub 2009 Dec 4.

16.

Participation of DNA polymerase zeta in replication of undamaged DNA in Saccharomyces cerevisiae.

Northam MR, Robinson HA, Kochenova OV, Shcherbakova PV.

Genetics. 2010 Jan;184(1):27-42. doi: 10.1534/genetics.109.107482. Epub 2009 Oct 19.

17.

DNA polymerases at the eukaryotic fork-20 years later.

Pavlov YI, Shcherbakova PV.

Mutat Res. 2010 Mar 1;685(1-2):45-53. doi: 10.1016/j.mrfmmm.2009.08.002. Epub 2009 Aug 12. Review.

18.

Roles of DNA polymerases in replication, repair, and recombination in eukaryotes.

Pavlov YI, Shcherbakova PV, Rogozin IB.

Int Rev Cytol. 2006;255:41-132. Review.

PMID:
17178465
19.

A novel function of DNA polymerase zeta regulated by PCNA.

Northam MR, Garg P, Baitin DM, Burgers PM, Shcherbakova PV.

EMBO J. 2006 Sep 20;25(18):4316-25. Epub 2006 Sep 7.

20.

Translesion synthesis DNA polymerases and control of genome stability.

Shcherbakova PV, Fijalkowska IJ.

Front Biosci. 2006 Sep 1;11:2496-517. Review.

PMID:
16720328
21.

Unique error signature of the four-subunit yeast DNA polymerase epsilon.

Shcherbakova PV, Pavlov YI, Chilkova O, Rogozin IB, Johansson E, Kunkel TA.

J Biol Chem. 2003 Oct 31;278(44):43770-80. Epub 2003 Jul 25.

22.

Functions of eukaryotic DNA polymerases.

Shcherbakova PV, Bebenek K, Kunkel TA.

Sci Aging Knowledge Environ. 2003 Feb 26;2003(8):RE3. Review.

PMID:
12844548
23.

DNA binding by yeast Mlh1 and Pms1: implications for DNA mismatch repair.

Hall MC, Shcherbakova PV, Fortune JM, Borchers CH, Dial JM, Tomer KB, Kunkel TA.

Nucleic Acids Res. 2003 Apr 15;31(8):2025-34.

24.

MLH1 mutations differentially affect meiotic functions in Saccharomyces cerevisiae.

Hoffmann ER, Shcherbakova PV, Kunkel TA, Borts RH.

Genetics. 2003 Feb;163(2):515-26.

25.

DNA binding properties of the yeast Msh2-Msh6 and Mlh1-Pms1 heterodimers.

Drotschmann K, Hall MC, Shcherbakova PV, Wang H, Erie DA, Brownewell FR, Kool ET, Kunkel TA.

Biol Chem. 2002 Jun;383(6):969-75. Review.

PMID:
12222686
26.

Differential ATP binding and intrinsic ATP hydrolysis by amino-terminal domains of the yeast Mlh1 and Pms1 proteins.

Hall MC, Shcherbakova PV, Kunkel TA.

J Biol Chem. 2002 Feb 1;277(5):3673-9. Epub 2001 Nov 20.

27.
28.

Inactivation of DNA mismatch repair by increased expression of yeast MLH1.

Shcherbakova PV, Hall MC, Lewis MS, Bennett SE, Martin KJ, Bushel PR, Afshari CA, Kunkel TA.

Mol Cell Biol. 2001 Feb;21(3):940-51.

29.

Mutator phenotype due to loss of heterozygosity in diploid yeast strains with mutations in MSH2 and MLH1.

Drotschmann K, Shcherbakova PV, Kunkel TA.

Toxicol Lett. 2000 Mar 15;112-113:239-44.

PMID:
10720737
30.
31.

Multiple antimutagenesis mechanisms affect mutagenic activity and specificity of the base analog 6-N-hydroxylaminopurine in bacteria and yeast.

Kozmin SG, Schaaper RM, Shcherbakova PV, Kulikov VN, Noskov VN, Guetsova ML, Alenin VV, Rogozin IB, Makarova KS, Pavlov YI.

Mutat Res. 1998 Jun 18;402(1-2):41-50. Review.

PMID:
9675240
32.

Base analog N6-hydroxylaminopurine mutagenesis in Escherichia coli: genetic control and molecular specificity.

Pavlov YI, Suslov VV, Shcherbakova PV, Kunkel TA, Ono A, Matsuda A, Schaaper RM.

Mutat Res. 1996 Oct 25;357(1-2):1-15.

PMID:
8876675
33.

Base analog 6-N-hydroxylaminopurine mutagenesis in the yeast Saccharomyces cerevisiae is controlled by replicative DNA polymerases.

Shcherbakova PV, Noskov VN, Pshenichnov MR, Pavlov YI.

Mutat Res. 1996 Jul 10;369(1-2):33-44.

PMID:
8700180
35.

HAM1, the gene controlling 6-N-hydroxylaminopurine sensitivity and mutagenesis in the yeast Saccharomyces cerevisiae.

Noskov VN, Staak K, Shcherbakova PV, Kozmin SG, Negishi K, Ono BC, Hayatsu H, Pavlov YI.

Yeast. 1996 Jan;12(1):17-29.

36.

Supplemental Content

Loading ...
Support Center