Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 85

1.

Detection of mRNAs Anchored to the Nuclear Envelope During Export Inhibition in Living Cells.

Ben-Yishay R, Shav-Tal Y.

Methods Mol Biol. 2019;2038:151-163. doi: 10.1007/978-1-4939-9674-2_10.

PMID:
31407283
2.

Imaging within single NPCs reveals NXF1's role in mRNA export on the cytoplasmic side of the pore.

Ben-Yishay R, Mor A, Shraga A, Ashkenazy-Titelman A, Kinor N, Schwed-Gross A, Jacob A, Kozer N, Kumar P, Garini Y, Shav-Tal Y.

J Cell Biol. 2019 Aug 2. pii: jcb.201901127. doi: 10.1083/jcb.201901127. [Epub ahead of print]

PMID:
31375530
3.

Cytoplasmic DNA can be detected by RNA fluorescence in situ hybridization.

Greenberg E, Hochberg-Laufer H, Blanga S, Kinor N, Shav-Tal Y.

Nucleic Acids Res. 2019 Jul 24. pii: gkz645. doi: 10.1093/nar/gkz645. [Epub ahead of print]

PMID:
31340014
4.

An oligonucleotide probe incorporating the chromophore of green fluorescent protein is useful for the detection of HER-2 mRNA breast cancer marker.

Saady A, Böttner V, Meng M, Varon E, Shav-Tal Y, Ducho C, Fischer B.

Eur J Med Chem. 2019 Jul 1;173:99-106. doi: 10.1016/j.ejmech.2019.04.013. Epub 2019 Apr 9.

PMID:
30991278
5.

Active RNA polymerase II curbs chromatin movement.

Hochberg-Laufer H, Shav-Tal Y.

J Cell Biol. 2019 May 6;218(5):1427-1428. doi: 10.1083/jcb.201903050. Epub 2019 Apr 4.

PMID:
30948424
6.

The dynamic lifecycle of mRNA in the nucleus.

Ben-Yishay R, Shav-Tal Y.

Curr Opin Cell Biol. 2019 Jun;58:69-75. doi: 10.1016/j.ceb.2019.02.007. Epub 2019 Mar 16. Review.

PMID:
30889416
7.

Uncoupling of nucleo-cytoplasmic RNA export and localization during stress.

Hochberg-Laufer H, Schwed-Gross A, Neugebauer KM, Shav-Tal Y.

Nucleic Acids Res. 2019 May 21;47(9):4778-4797. doi: 10.1093/nar/gkz168.

8.

Phospho-Tau Impairs Nuclear-Cytoplasmic Transport.

Tripathi T, Prakash J, Shav-Tal Y.

ACS Chem Neurosci. 2019 Jan 16;10(1):36-38. doi: 10.1021/acschemneuro.8b00632. Epub 2018 Nov 27.

PMID:
30480430
9.

S-phase transcriptional buffering quantified on two different promoters.

Yunger S, Kafri P, Rosenfeld L, Greenberg E, Kinor N, Garini Y, Shav-Tal Y.

Life Sci Alliance. 2018 Sep 19;1(5):e201800086. doi: 10.26508/lsa.201800086. eCollection 2018 Oct.

10.

Yeast and Human Nuclear Pore Complexes: Not So Similar After All.

Shav-Tal Y, Tripathi T.

Trends Cell Biol. 2018 Aug;28(8):589-591. doi: 10.1016/j.tcb.2018.06.004. Epub 2018 Jun 22.

PMID:
29941187
11.

Visualizing nuclear RNAi activity in single living human cells.

Avivi S, Mor A, Dotan I, Tzadok S, Kanter I, Kinor N, Canaani D, Shav-Tal Y.

Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):E8837-E8846. doi: 10.1073/pnas.1707440114. Epub 2017 Oct 3.

12.

Visualizing Nuclear RNA Editing.

Hochberg H, Shav-Tal Y.

Trends Biochem Sci. 2017 Nov;42(11):845-847. doi: 10.1016/j.tibs.2017.09.004. Epub 2017 Sep 28.

PMID:
28965669
13.

mRNPs meet stress granules.

Sheinberger J, Shav-Tal Y.

FEBS Lett. 2017 Sep;591(17):2534-2542. doi: 10.1002/1873-3468.12765. Epub 2017 Aug 8. Review.

14.

Mutations in S-adenosylhomocysteine hydrolase (AHCY) affect its nucleocytoplasmic distribution and capability to interact with S-adenosylhomocysteine hydrolase-like 1 protein.

Grbeša I, Kalo A, Belužić R, Kovačević L, Lepur A, Rokić F, Hochberg H, Kanter I, Simunović V, Muńoz-Torres PM, Shav-Tal Y, Vugrek O.

Eur J Cell Biol. 2017 Sep;96(6):579-590. doi: 10.1016/j.ejcb.2017.05.002. Epub 2017 May 13.

15.

Measuring transcription dynamics in living cells using a photobleaching approach.

Hochberg H, Brody Y, Shav-Tal Y.

Methods. 2017 May 1;120:58-64. doi: 10.1016/j.ymeth.2017.04.007. Epub 2017 Apr 21. Review.

PMID:
28434903
16.

Quantifying β-catenin subcellular dynamics and cyclin D1 mRNA transcription during Wnt signaling in single living cells.

Kafri P, Hasenson SE, Kanter I, Sheinberger J, Kinor N, Yunger S, Shav-Tal Y.

Elife. 2016 Nov 23;5. pii: e16748. doi: 10.7554/eLife.16748.

17.

De-novo protein function prediction using DNA binding and RNA binding proteins as a test case.

Peled S, Leiderman O, Charar R, Efroni G, Shav-Tal Y, Ofran Y.

Nat Commun. 2016 Nov 21;7:13424. doi: 10.1038/ncomms13424.

18.

FRET energy transfer via Pdots improves the efficiency of photodynamic therapy and leads to rapid cell death.

Haupt S, Lazar I, Weitman H, Shav-Tal Y, Ehrenberg B.

J Photochem Photobiol B. 2016 Nov;164:123-131. doi: 10.1016/j.jphotobiol.2016.09.019. Epub 2016 Sep 14.

PMID:
27665183
19.

The stress-inducible transcription factor ATF4 accumulates at specific rRNA-processing nucleolar regions after proteasome inhibition.

Galimberti V, Kinor N, Shav-Tal Y, Biggiogera M, Brüning A.

Eur J Cell Biol. 2016 Oct;95(10):389-400. doi: 10.1016/j.ejcb.2016.08.002. Epub 2016 Aug 20.

PMID:
27567537
20.

Dynamic Encounters of Genes and Transcripts with the Nuclear Pore.

Ben-Yishay R, Ashkenazy AJ, Shav-Tal Y.

Trends Genet. 2016 Jul;32(7):419-431. doi: 10.1016/j.tig.2016.04.003. Epub 2016 May 13. Review.

PMID:
27185238
21.

Methods for visualizing RNA in cells, tissues and whole organisms.

Shav-Tal Y.

Methods. 2016 Apr 1;98:1-3. doi: 10.1016/j.ymeth.2016.02.011. Epub 2016 Feb 27. No abstract available.

PMID:
26926250
22.

Exploring chromatin organization mechanisms through its dynamic properties.

Bronshtein I, Kanter I, Kepten E, Lindner M, Berezin S, Shav-Tal Y, Garini Y.

Nucleus. 2016;7(1):27-33. doi: 10.1080/19491034.2016.1139272. Epub 2016 Feb 8.

23.

Design (and) principles of nuclear dynamics in Stockholm.

Shav-Tal Y, Lammerding J.

Nucleus. 2015;6(6):425-9. doi: 10.1080/19491034.2015.1128609.

24.

Cellular Levels of Signaling Factors Are Sensed by β-actin Alleles to Modulate Transcriptional Pulse Intensity.

Kalo A, Kanter I, Shraga A, Sheinberger J, Tzemach H, Kinor N, Singer RH, Lionnet T, Shav-Tal Y.

Cell Rep. 2015 Nov 10;13(6):1284-1285. doi: 10.1016/j.celrep.2015.10.053. Epub 2015 Nov 10. No abstract available.

25.

Single-site transcription rates through fitting of ensemble-averaged data from fluorescence recovery after photobleaching: a fat-tailed distribution.

Rosenfeld L, Kepten E, Yunger S, Shav-Tal Y, Garini Y.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032715. doi: 10.1103/PhysRevE.92.032715. Epub 2015 Sep 17.

PMID:
26465506
26.

Loss of lamin A function increases chromatin dynamics in the nuclear interior.

Bronshtein I, Kepten E, Kanter I, Berezin S, Lindner M, Redwood AB, Mai S, Gonzalo S, Foisner R, Shav-Tal Y, Garini Y.

Nat Commun. 2015 Aug 24;6:8044. doi: 10.1038/ncomms9044.

27.

The proteolysis adaptor, NblA, is essential for degradation of the core pigment of the cyanobacterial light-harvesting complex.

Sendersky E, Kozer N, Levi M, Moizik M, Garini Y, Shav-Tal Y, Schwarz R.

Plant J. 2015 Sep;83(5):845-52. doi: 10.1111/tpj.12931. Epub 2015 Aug 1.

28.

Cellular Levels of Signaling Factors Are Sensed by β-actin Alleles to Modulate Transcriptional Pulse Intensity.

Kalo A, Kanter I, Shraga A, Sheinberger J, Tzemach H, Kinor N, Singer RH, Lionnet T, Shav-Tal Y.

Cell Rep. 2015 Apr 21;11(3):419-32. doi: 10.1016/j.celrep.2015.03.039. Epub 2015 Apr 9.

29.

Quantifying mRNA targeting to P-bodies in living human cells reveals their dual role in mRNA decay and storage.

Aizer A, Kalo A, Kafri P, Shraga A, Ben-Yishay R, Jacob A, Kinor N, Shav-Tal Y.

J Cell Sci. 2014 Oct 15;127(Pt 20):4443-56. doi: 10.1242/jcs.152975. Epub 2014 Aug 15.

30.

The proteolysis adaptor, NblA, initiates protein pigment degradation by interacting with the cyanobacterial light-harvesting complexes.

Sendersky E, Kozer N, Levi M, Garini Y, Shav-Tal Y, Schwarz R.

Plant J. 2014 Jul;79(1):118-26. doi: 10.1111/tpj.12543. Epub 2014 Jun 13.

31.

Development of fluorescent double-strand probes labeled with 8-(p-CF3-cinnamyl)-adenosine for the detection of cyclin D1 breast cancer marker.

Zilbershtein-Shklanovsky L, Kafri P, Shav-Tal Y, Yavin E, Fischer B.

Eur J Med Chem. 2014 May 22;79:77-88. doi: 10.1016/j.ejmech.2014.03.081. Epub 2014 Mar 30.

PMID:
24727242
32.

Detection of cyclin D1 mRNA by hybridization sensitive NIC-oligonucleotide probe.

Kovaliov M, Segal M, Kafri P, Yavin E, Shav-Tal Y, Fischer B.

Bioorg Med Chem. 2014 May 1;22(9):2613-21. doi: 10.1016/j.bmc.2014.03.033. Epub 2014 Mar 29.

PMID:
24726303
33.

Quantifying the ratio of spliceosome components assembled on pre-mRNA.

Neufeld N, Brody Y, Shav-Tal Y.

Methods Mol Biol. 2014;1126:257-69. doi: 10.1007/978-1-62703-980-2_19.

PMID:
24549670
34.

Resolving the spatial relationship between intracellular components by dual color super resolution optical fluctuations imaging (SOFI).

Gallina ME, Xu J, Dertinger T, Aizer A, Shav-Tal Y, Weiss S.

Opt Nanoscopy. 2013 Feb 25;2. doi: 10.1186/2192-2853-2-2.

35.

Single mRNP tracking in living mammalian cells.

Kalo A, Kafri P, Shav-Tal Y.

Methods Mol Biol. 2013;1042:87-99. doi: 10.1007/978-1-62703-526-2_7.

PMID:
23980002
36.

The nuclear cap-binding complex interacts with the U4/U6·U5 tri-snRNP and promotes spliceosome assembly in mammalian cells.

Pabis M, Neufeld N, Steiner MC, Bojic T, Shav-Tal Y, Neugebauer KM.

RNA. 2013 Aug;19(8):1054-63. doi: 10.1261/rna.037069.112. Epub 2013 Jun 21.

37.

Zooming in on single active genes in living mammalian cells.

Yunger S, Kalo A, Kafri P, Sheinberger J, Lavi E, Neufeld N, Shav-Tal Y.

Histochem Cell Biol. 2013 Jul;140(1):71-9. doi: 10.1007/s00418-013-1100-2. Epub 2013 Jun 9. Review.

PMID:
23748242
38.

Detection of mRNA of the cyclin D1 breast cancer marker by a novel duplex-DNA probe.

Segal M, Yavin E, Kafri P, Shav-Tal Y, Fischer B.

J Med Chem. 2013 Jun 27;56(12):4860-9. doi: 10.1021/jm301838y. Epub 2013 Jun 6.

PMID:
23688195
39.

The dynamic pathway of nuclear RNA in eukaryotes.

Sheinberger J, Shav-Tal Y.

Nucleus. 2013 May-Jun;4(3):195-205. doi: 10.4161/nucl.24434. Epub 2013 Apr 11. Review.

40.

Quantifying the transcriptional output of single alleles in single living mammalian cells.

Yunger S, Rosenfeld L, Garini Y, Shav-Tal Y.

Nat Protoc. 2013 Feb;8(2):393-408.

41.

Acting on impulse: dissecting the dynamics of the NFAT transcriptional response.

Kalo A, Shav-Tal Y.

Genome Biol. 2013 Jan 24;14(1):102. doi: 10.1186/gb-2013-14-1-102.

42.

Nek7 kinase accelerates microtubule dynamic instability.

Cohen S, Aizer A, Shav-Tal Y, Yanai A, Motro B.

Biochim Biophys Acta. 2013 May;1833(5):1104-13. doi: 10.1016/j.bbamcr.2012.12.021. Epub 2013 Jan 8.

43.

The P body protein Dcp1a is hyper-phosphorylated during mitosis.

Aizer A, Kafri P, Kalo A, Shav-Tal Y.

PLoS One. 2013;8(1):e49783. doi: 10.1371/journal.pone.0049783. Epub 2013 Jan 2.

44.

Transcription and splicing: when the twain meet.

Brody Y, Shav-Tal Y.

Transcription. 2011 Sep-Oct;2(5):216-20. doi: 10.4161/trns.2.5.17273.

45.

Dynamics and kinetics of nucleo-cytoplasmic mRNA export.

Mor A, Shav-Tal Y.

Wiley Interdiscip Rev RNA. 2010 Nov-Dec;1(3):388-401. doi: 10.1002/wrna.41. Epub 2010 Sep 15. Review.

PMID:
21956938
46.

Measuring the kinetics of mRNA transcription in single living cells.

Brody Y, Shav-Tal Y.

J Vis Exp. 2011 Aug 25;(54):e2898. doi: 10.3791/2898.

47.

The dynamics of the alternatively spliced NOL7 gene products and role in nucleolar architecture.

Kinor N, Shav-Tal Y.

Nucleus. 2011 May-Jun;2(3):229-45. doi: 10.4161/nucl.2.3.15893.

48.

Sonochemical synthesis of DNA nanospheres.

Shimanovich U, Eliaz D, Aizer A, Vayman I, Michaeli S, Shav-Tal Y, Gedanken A.

Chembiochem. 2011 Jul 25;12(11):1678-81. doi: 10.1002/cbic.201100009. Epub 2011 May 30. No abstract available.

PMID:
21626636
49.

The Dbp5 cycle at the nuclear pore complex during mRNA export I: dbp5 mutants with defects in RNA binding and ATP hydrolysis define key steps for Nup159 and Gle1.

Hodge CA, Tran EJ, Noble KN, Alcazar-Roman AR, Ben-Yishay R, Scarcelli JJ, Folkmann AW, Shav-Tal Y, Wente SR, Cole CN.

Genes Dev. 2011 May 15;25(10):1052-64. doi: 10.1101/gad.2041611.

50.

Imaging mRNAs in living mammalian cells.

Yunger S, Shav-Tal Y.

Methods Mol Biol. 2011;714:249-63. doi: 10.1007/978-1-61779-005-8_16.

PMID:
21431746

Supplemental Content

Loading ...
Support Center