Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 62

1.

On the Antibacterial Activity of Azacarboxylate Ligands: Lowered Metal Ion Affinities for Bis-amide Derivatives of EDTA do not mean Reduced Activity.

Mulla RS, Beecroft MS, Pal R, Aguilar JA, Pitarch-Jarque J, García-España E, Lurie-Luke E, Sharples GJ, Gareth Williams JA.

Chemistry. 2018 May 17;24(28):7137-7148. doi: 10.1002/chem.201800026. Epub 2018 Mar 23.

PMID:
29570870
2.

The intracellular immune receptor Rx1 regulates the DNA-binding activity of a Golden2-like transcription factor.

Townsend PD, Dixon CH, Slootweg EJ, Sukarta OCA, Yang AWH, Hughes TR, Sharples GJ, Pålsson LO, Takken FLW, Goverse A, Cann MJ.

J Biol Chem. 2018 Mar 2;293(9):3218-3233. doi: 10.1074/jbc.RA117.000485. Epub 2017 Dec 7.

3.

Exploring the links between peptoid antibacterial activity and toxicity.

Bolt HL, Eggimann GA, Jahoda CAB, Zuckermann RN, Sharples GJ, Cobb SL.

Medchemcomm. 2017 Feb 1;8(5):886-896. doi: 10.1039/c6md00648e. eCollection 2017 May 1.

4.

Glycosylated Nanoparticles as Efficient Antimicrobial Delivery Agents.

Eissa AM, Abdulkarim A, Sharples GJ, Cameron NR.

Biomacromolecules. 2016 Aug 8;17(8):2672-9. doi: 10.1021/acs.biomac.6b00711. Epub 2016 Jul 27.

PMID:
27434596
5.

Mycobacterium tuberculosis RuvX is a Holliday junction resolvase formed by dimerisation of the monomeric YqgF nuclease domain.

Nautiyal A, Rani PS, Sharples GJ, Muniyappa K.

Mol Microbiol. 2016 May;100(4):656-74. doi: 10.1111/mmi.13338. Epub 2016 Apr 1. Erratum in: Mol Microbiol. 2016 Jul;101(1):182.

6.

The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange.

Fenyk S, Dixon CH, Gittens WH, Townsend PD, Sharples GJ, Pålsson LO, Takken FL, Cann MJ.

J Biol Chem. 2016 Jan 15;291(3):1137-47. doi: 10.1074/jbc.M115.698589. Epub 2015 Nov 24.

7.

Preparation of an Antibacterial Poly(ionic liquid) Graft Copolymer of Hydroxyethyl Cellulose.

Joubert F, Yeo RP, Sharples GJ, Musa OM, Hodgson DR, Cameron NR.

Biomacromolecules. 2015 Dec 14;16(12):3970-9. doi: 10.1021/acs.biomac.5b01300. Epub 2015 Nov 19.

PMID:
26544047
8.

The Potato Nucleotide-binding Leucine-rich Repeat (NLR) Immune Receptor Rx1 Is a Pathogen-dependent DNA-deforming Protein.

Fenyk S, Townsend PD, Dixon CH, Spies GB, de San Eustaquio Campillo A, Slootweg EJ, Westerhof LB, Gawehns FK, Knight MR, Sharples GJ, Goverse A, Pålsson LO, Takken FL, Cann MJ.

J Biol Chem. 2015 Oct 9;290(41):24945-60. doi: 10.1074/jbc.M115.672121. Epub 2015 Aug 25.

9.

Phage ORF family recombinases: conservation of activities and involvement of the central channel in DNA binding.

Curtis FA, Malay AD, Trotter AJ, Wilson LA, Barradell-Black MM, Bowers LY, Reed P, Hillyar CR, Yeo RP, Sanderson JM, Heddle JG, Sharples GJ.

PLoS One. 2014 Aug 1;9(8):e102454. doi: 10.1371/journal.pone.0102454. eCollection 2014.

10.

Structural and functional characterization of the Redβ recombinase from bacteriophage λ.

Matsubara K, Malay AD, Curtis FA, Sharples GJ, Heddle JG.

PLoS One. 2013 Nov 11;8(11):e78869. doi: 10.1371/journal.pone.0078869. eCollection 2013.

11.

Mutants of phage bIL67 RuvC with enhanced Holliday junction binding selectivity and resolution symmetry.

Green V, Curtis FA, Sedelnikova S, Rafferty JB, Sharples GJ.

Mol Microbiol. 2013 Sep;89(6):1240-58. doi: 10.1111/mmi.12343. Epub 2013 Aug 14.

12.

The C-terminus of the phage λ Orf recombinase is involved in DNA binding.

Curtis FA, Reed P, Wilson LA, Bowers LY, Yeo RP, Sanderson JM, Walmsley AR, Sharples GJ.

J Mol Recognit. 2011 Mar-Apr;24(2):333-40. doi: 10.1002/jmr.1079. Epub 2010 Dec 13.

PMID:
21360615
13.

For absent friends: life without recombination in mutualistic gamma-proteobacteria.

Sharples GJ.

Trends Microbiol. 2009 Jun;17(6):233-42. doi: 10.1016/j.tim.2009.03.005. Epub 2009 May 21.

PMID:
19464894
14.

The N-terminal region of the RecU holliday junction resolvase is essential for homologous recombination.

Carrasco B, Cañas C, Sharples GJ, Alonso JC, Ayora S.

J Mol Biol. 2009 Jul 3;390(1):1-9. doi: 10.1016/j.jmb.2009.04.065. Epub 2009 May 5.

PMID:
19422832
15.

Novel antibiotics: C-2 symmetrical macrocycles inhibiting Holliday junction DNA binding by E. coli RuvC.

Pan PS, Curtis FA, Carroll CL, Medina I, Liotta LA, Sharples GJ, McAlpine SR.

Bioorg Med Chem. 2006 Jul 15;14(14):4731-9. Epub 2006 Apr 11.

PMID:
16581254
16.

Functional similarities between phage lambda Orf and Escherichia coli RecFOR in initiation of genetic exchange.

Maxwell KL, Reed P, Zhang RG, Beasley S, Walmsley AR, Curtis FA, Joachimiak A, Edwards AM, Sharples GJ.

Proc Natl Acad Sci U S A. 2005 Aug 9;102(32):11260-5. Epub 2005 Aug 2.

17.

The RuvAB branch migration translocase and RecU Holliday junction resolvase are required for double-stranded DNA break repair in Bacillus subtilis.

Sanchez H, Kidane D, Reed P, Curtis FA, Cozar MC, Graumann PL, Sharples GJ, Alonso JC.

Genetics. 2005 Nov;171(3):873-83. Epub 2005 Jul 14.

18.

VceR regulates the vceCAB drug efflux pump operon of Vibrio cholerae by alternating between mutually exclusive conformations that bind either drugs or promoter DNA.

Borges-Walmsley MI, Du D, McKeegan KS, Sharples GJ, Walmsley AR.

J Mol Biol. 2005 Jun 3;349(2):387-400. Epub 2005 Apr 2.

PMID:
15890203
19.

Evolution of a phage RuvC endonuclease for resolution of both Holliday and branched DNA junctions.

Curtis FA, Reed P, Sharples GJ.

Mol Microbiol. 2005 Mar;55(5):1332-45.

20.

Conservation of RecG activity from pathogens to hyperthermophiles.

Wen Q, Mahdi AA, Briggs GS, Sharples GJ, Lloyd RG.

DNA Repair (Amst). 2005 Jan 2;4(1):23-31.

PMID:
15533834
21.

Holliday junction binding and resolution by the Rap structure-specific endonuclease of phage lambda.

Sharples GJ, Curtis FA, McGlynn P, Bolt EL.

J Mol Biol. 2004 Jul 16;340(4):739-51.

PMID:
15223317
22.

DNA binding by the meningococcal RdgC protein, associated with pilin antigenic variation.

Moore T, Sharples GJ, Lloyd RG.

J Bacteriol. 2004 Feb;186(3):870-4.

23.

The structure of Escherichia coli RusA endonuclease reveals a new Holliday junction DNA binding fold.

Rafferty JB, Bolt EL, Muranova TA, Sedelnikova SE, Leonard P, Pasquo A, Baker PJ, Rice DW, Sharples GJ, Lloyd RG.

Structure. 2003 Dec;11(12):1557-67.

24.
25.
26.

A model for dsDNA translocation revealed by a structural motif common to RecG and Mfd proteins.

Mahdi AA, Briggs GS, Sharples GJ, Wen Q, Lloyd RG.

EMBO J. 2003 Feb 3;22(3):724-34.

27.
28.

Holliday junction binding and processing by the RuvA protein of Mycoplasma pneumoniae.

Ingleston SM, Dickman MJ, Grasby JA, Hornby DP, Sharples GJ, Lloyd RG.

Eur J Biochem. 2002 Mar;269(5):1525-33.

29.

Genetic analysis of an archaeal Holliday junction resolvase in Escherichia coli.

Bolt EL, Lloyd RG, Sharples GJ.

J Mol Biol. 2001 Jul 13;310(3):577-89.

PMID:
11439025
30.

The X philes: structure-specific endonucleases that resolve Holliday junctions.

Sharples GJ.

Mol Microbiol. 2001 Feb;39(4):823-34. Review.

31.
32.
33.

DNA structure specificity of Rap endonuclease.

Sharples GJ, Corbett LM, McGlynn P.

Nucleic Acids Res. 1999 Nov 1;27(21):4121-7.

34.

Holliday junction processing in bacteria: insights from the evolutionary conservation of RuvABC, RecG, and RusA.

Sharples GJ, Ingleston SM, Lloyd RG.

J Bacteriol. 1999 Sep;181(18):5543-50. Review. No abstract available.

35.
36.

lambda Rap protein is a structure-specific endonuclease involved in phage recombination.

Sharples GJ, Corbett LM, Graham IR.

Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13507-12.

37.

Sequence-specificity of Holliday junction resolution: identification of RuvC mutants defective in metal binding and target site recognition.

Hagan NF, Vincent SD, Ingleston SM, Sharples GJ, Bennett RJ, West SC, Lloyd RG.

J Mol Biol. 1998 Aug 7;281(1):17-29.

PMID:
9680472
38.

Structural similarities between Escherichia coli RuvA protein and other DNA-binding proteins and a mutational analysis of its binding to the holliday junction.

Rafferty JB, Ingleston SM, Hargreaves D, Artymiuk PJ, Sharples GJ, Lloyd RG, Rice DW.

J Mol Biol. 1998 Apr 24;278(1):105-16.

PMID:
9571037
39.

Characterization of a thermosensitive Escherichia coli aspartyl-tRNA synthetase mutant.

Martin F, Sharples GJ, Lloyd RG, Eiler S, Moras D, Gangloff J, Eriani G.

J Bacteriol. 1997 Jun;179(11):3691-6.

40.

Crystal structure of DNA recombination protein RuvA and a model for its binding to the Holliday junction.

Rafferty JB, Sedelnikova SE, Hargreaves D, Artymiuk PJ, Baker PJ, Sharples GJ, Mahdi AA, Lloyd RG, Rice DW.

Science. 1996 Oct 18;274(5286):415-21.

PMID:
8832889
41.
42.

Holliday junction resolvases encoded by homologous rusA genes in Escherichia coli K-12 and phage 82.

Mahdi AA, Sharples GJ, Mandal TN, Lloyd RG.

J Mol Biol. 1996 Apr 5;257(3):561-73.

PMID:
8648624
43.

Haemophilus virulence.

Sharples GJ.

Microbiology. 1996 Apr;142 ( Pt 4):717. No abstract available.

PMID:
8936299
44.

The mmsA locus of Streptococcus pneumoniae encodes a RecG-like protein involved in DNA repair and in three-strand recombination.

Martin B, Sharples GJ, Humbert O, Lloyd RG, Claverys JP.

Mol Microbiol. 1996 Mar;19(5):1035-45.

PMID:
8830261
45.
46.
47.

Cloning, overexpression, purification, and characterization of the Escherichia coli RuvC Holliday junction resolvase.

Dunderdale HJ, Sharples GJ, Lloyd RG, West SC.

J Biol Chem. 1994 Feb 18;269(7):5187-94.

48.

A mutation in helicase motif III of E. coli RecG protein abolishes branch migration of Holliday junctions.

Sharples GJ, Whitby MC, Ryder L, Lloyd RG.

Nucleic Acids Res. 1994 Feb 11;22(3):308-13.

49.

An E. coli RuvC mutant defective in cleavage of synthetic Holliday junctions.

Sharples GJ, Lloyd RG.

Nucleic Acids Res. 1993 Jul 25;21(15):3359-64.

50.

Supplemental Content

Loading ...
Support Center