Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 26

1.

In vivo imaging of mitochondrial membrane potential in non-small-cell lung cancer.

Momcilovic M, Jones A, Bailey ST, Waldmann CM, Li R, Lee JT, Abdelhady G, Gomez A, Holloway T, Schmid E, Stout D, Fishbein MC, Stiles L, Dabir DV, Dubinett SM, Christofk H, Shirihai O, Koehler CM, Sadeghi S, Shackelford DB.

Nature. 2019 Nov;575(7782):380-384. doi: 10.1038/s41586-019-1715-0. Epub 2019 Oct 30.

PMID:
31666695
2.

Individual cristae within the same mitochondrion display different membrane potentials and are functionally independent.

Wolf DM, Segawa M, Kondadi AK, Anand R, Bailey ST, Reichert AS, van der Bliek AM, Shackelford DB, Liesa M, Shirihai OS.

EMBO J. 2019 Nov 15;38(22):e101056. doi: 10.15252/embj.2018101056. Epub 2019 Oct 14.

3.

p63 and SOX2 Dictate Glucose Reliance and Metabolic Vulnerabilities in Squamous Cell Carcinomas.

Hsieh MH, Choe JH, Gadhvi J, Kim YJ, Arguez MA, Palmer M, Gerold H, Nowak C, Do H, Mazambani S, Knighton JK, Cha M, Goodwin J, Kang MK, Jeong JY, Lee SY, Faubert B, Xuan Z, Abel ED, Scafoglio C, Shackelford DB, Minna JD, Singh PK, Shulaev V, Bleris L, Hoyt K, Kim J, Inoue M, DeBerardinis RJ, Kim TH, Kim JW.

Cell Rep. 2019 Aug 13;28(7):1860-1878.e9. doi: 10.1016/j.celrep.2019.07.027.

4.

Teaching an Old Drug New Tricks.

Momcilovic M, Shackelford DB.

Cancer Cell. 2019 May 13;35(5):709-711. doi: 10.1016/j.ccell.2019.04.008.

PMID:
31085172
5.

Sodium-glucose transporter 2 is a diagnostic and therapeutic target for early-stage lung adenocarcinoma.

Scafoglio CR, Villegas B, Abdelhady G, Bailey ST, Liu J, Shirali AS, Wallace WD, Magyar CE, Grogan TR, Elashoff D, Walser T, Yanagawa J, Aberle DR, Barrio JR, Dubinett SM, Shackelford DB.

Sci Transl Med. 2018 Nov 14;10(467). pii: eaat5933. doi: 10.1126/scitranslmed.aat5933.

6.

Genetic Analysis Reveals AMPK Is Required to Support Tumor Growth in Murine Kras-Dependent Lung Cancer Models.

Eichner LJ, Brun SN, Herzig S, Young NP, Curtis SD, Shackelford DB, Shokhirev MN, Leblanc M, Vera LI, Hutchins A, Ross DS, Shaw RJ, Svensson RU.

Cell Metab. 2019 Feb 5;29(2):285-302.e7. doi: 10.1016/j.cmet.2018.10.005. Epub 2018 Nov 8.

PMID:
30415923
7.

Extracellular Matrix Remodeling Regulates Glucose Metabolism through TXNIP Destabilization.

Sullivan WJ, Mullen PJ, Schmid EW, Flores A, Momcilovic M, Sharpley MS, Jelinek D, Whiteley AE, Maxwell MB, Wilde BR, Banerjee U, Coller HA, Shackelford DB, Braas D, Ayer DE, de Aguiar Vallim TQ, Lowry WE, Christofk HR.

Cell. 2018 Sep 20;175(1):117-132.e21. doi: 10.1016/j.cell.2018.08.017. Epub 2018 Sep 6.

8.

Utilizing 18F-FDG PET/CT Imaging and Quantitative Histology to Measure Dynamic Changes in the Glucose Metabolism in Mouse Models of Lung Cancer.

Momcilovic M, Bailey ST, Lee JT, Zamilpa C, Jones A, Abdelhady G, Mansfield J, Francis KP, Shackelford DB.

J Vis Exp. 2018 Jul 21;(137). doi: 10.3791/57167.

9.

The GSK3 Signaling Axis Regulates Adaptive Glutamine Metabolism in Lung Squamous Cell Carcinoma.

Momcilovic M, Bailey ST, Lee JT, Fishbein MC, Braas D, Go J, Graeber TG, Parlati F, Demo S, Li R, Walser TC, Gricowski M, Shuman R, Ibarra J, Fridman D, Phelps ME, Badran K, St John M, Bernthal NM, Federman N, Yanagawa J, Dubinett SM, Sadeghi S, Christofk HR, Shackelford DB.

Cancer Cell. 2018 May 14;33(5):905-921.e5. doi: 10.1016/j.ccell.2018.04.002.

10.

Imaging Cancer Metabolism.

Momcilovic M, Shackelford DB.

Biomol Ther (Seoul). 2018 Jan 1;26(1):81-92. doi: 10.4062/biomolther.2017.220. Review.

11.

Targeting Hypoxia-Inducible Factor-1α/Pyruvate Dehydrogenase Kinase 1 Axis by Dichloroacetate Suppresses Bleomycin-induced Pulmonary Fibrosis.

Goodwin J, Choi H, Hsieh MH, Neugent ML, Ahn JM, Hayenga HN, Singh PK, Shackelford DB, Lee IK, Shulaev V, Dhar S, Takeda N, Kim JW.

Am J Respir Cell Mol Biol. 2018 Feb;58(2):216-231. doi: 10.1165/rcmb.2016-0186OC.

12.

An Automated Multidose Synthesis of the Potentiometric PET Probe 4-[18F]Fluorobenzyl-Triphenylphosphonium ([18F]FBnTP).

Waldmann CM, Gomez A, Marchis P, Bailey ST, Momcilovic M, Jones AE, Shackelford DB, Sadeghi S.

Mol Imaging Biol. 2018 Apr;20(2):205-212. doi: 10.1007/s11307-017-1119-1.

13.

The distinct metabolic phenotype of lung squamous cell carcinoma defines selective vulnerability to glycolytic inhibition.

Goodwin J, Neugent ML, Lee SY, Choe JH, Choi H, Jenkins DMR, Ruthenborg RJ, Robinson MW, Jeong JY, Wake M, Abe H, Takeda N, Endo H, Inoue M, Xuan Z, Yoo H, Chen M, Ahn JM, Minna JD, Helke KL, Singh PK, Shackelford DB, Kim JW.

Nat Commun. 2017 May 26;8:15503. doi: 10.1038/ncomms15503.

14.

Dual targeting of EGFR and glutaminase in lung cancer.

Momcilovic M, Shackelford DB.

Mol Cell Oncol. 2017 Apr 19;5(3):e1297883. doi: 10.1080/23723556.2017.1297883. eCollection 2018.

15.

Targeted Inhibition of EGFR and Glutaminase Induces Metabolic Crisis in EGFR Mutant Lung Cancer.

Momcilovic M, Bailey ST, Lee JT, Fishbein MC, Magyar C, Braas D, Graeber T, Jackson NJ, Czernin J, Emberley E, Gross M, Janes J, Mackinnon A, Pan A, Rodriguez M, Works M, Zhang W, Parlati F, Demo S, Garon E, Krysan K, Walser TC, Dubinett SM, Sadeghi S, Christofk HR, Shackelford DB.

Cell Rep. 2017 Jan 17;18(3):601-610. doi: 10.1016/j.celrep.2016.12.061.

16.

Repurposing phenformin for the targeting of glioma stem cells and the treatment of glioblastoma.

Jiang W, Finniss S, Cazacu S, Xiang C, Brodie Z, Mikkelsen T, Poisson L, Shackelford DB, Brodie C.

Oncotarget. 2016 Aug 30;7(35):56456-56470. doi: 10.18632/oncotarget.10919.

17.

Heightening Energetic Stress Selectively Targets LKB1-Deficient Non-Small Cell Lung Cancers.

Momcilovic M, McMickle R, Abt E, Seki A, Simko SA, Magyar C, Stout DB, Fishbein MC, Walser TC, Dubinett SM, Shackelford DB.

Cancer Res. 2015 Nov 15;75(22):4910-22. doi: 10.1158/0008-5472.CAN-15-0797.

18.

Targeting LKB1 in cancer - exposing and exploiting vulnerabilities.

Momcilovic M, Shackelford DB.

Br J Cancer. 2015 Aug 11;113(4):574-84. doi: 10.1038/bjc.2015.261. Epub 2015 Jul 21. Review.

19.

Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1α.

Faubert B, Vincent EE, Griss T, Samborska B, Izreig S, Svensson RU, Mamer OA, Avizonis D, Shackelford DB, Shaw RJ, Jones RG.

Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2554-9. doi: 10.1073/pnas.1312570111. Epub 2014 Feb 3.

20.
21.

Hypoxia induces a phase transition within a kinase signaling network in cancer cells.

Wei W, Shi Q, Remacle F, Qin L, Shackelford DB, Shin YS, Mischel PS, Levine RD, Heath JR.

Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):E1352-60. doi: 10.1073/pnas.1303060110. Epub 2013 Mar 25.

22.

LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin.

Shackelford DB, Abt E, Gerken L, Vasquez DS, Seki A, Leblanc M, Wei L, Fishbein MC, Czernin J, Mischel PS, Shaw RJ.

Cancer Cell. 2013 Feb 11;23(2):143-58. doi: 10.1016/j.ccr.2012.12.008. Epub 2013 Jan 24.

23.

Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy.

Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM, Fitzpatrick J, Dillin A, Viollet B, Kundu M, Hansen M, Shaw RJ.

Science. 2011 Jan 28;331(6016):456-61. doi: 10.1126/science.1196371. Epub 2010 Dec 23.

24.

The LKB1-AMPK pathway: metabolism and growth control in tumour suppression.

Shackelford DB, Shaw RJ.

Nat Rev Cancer. 2009 Aug;9(8):563-75. doi: 10.1038/nrc2676.

25.

mTOR and HIF-1alpha-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome.

Shackelford DB, Vasquez DS, Corbeil J, Wu S, Leblanc M, Wu CL, Vera DR, Shaw RJ.

Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11137-42. doi: 10.1073/pnas.0900465106. Epub 2009 Jun 18.

26.

AMPK phosphorylation of raptor mediates a metabolic checkpoint.

Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ.

Mol Cell. 2008 Apr 25;30(2):214-26. doi: 10.1016/j.molcel.2008.03.003.

Supplemental Content

Loading ...
Support Center