Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 12

1.

Daptomycin Pore Formation and Stoichiometry Depend on Membrane Potential of Target Membrane.

Seydlová G, Sokol A, Lišková P, Konopásek I, Fišer R.

Antimicrob Agents Chemother. 2018 Dec 21;63(1). pii: e01589-18. doi: 10.1128/AAC.01589-18. Print 2019 Jan.

2.

A Single Tim Translocase in the Mitosomes of Giardia intestinalis Illustrates Convergence of Protein Import Machines in Anaerobic Eukaryotes.

Pyrihová E, Motycková A, Voleman L, Wandyszewska N, Fišer R, Seydlová G, Roger A, Kolísko M, Doležal P.

Genome Biol Evol. 2018 Oct 1;10(10):2813-2822. doi: 10.1093/gbe/evy215.

3.

Lipophosphonoxins II: Design, Synthesis, and Properties of Novel Broad Spectrum Antibacterial Agents.

Seydlová G, Pohl R, Zborníková E, Ehn M, Šimák O, Panova N, Kolář M, Bogdanová K, Večeřová R, Fišer R, Šanderová H, Vítovská D, Sudzinová P, Pospíšil J, Benada O, Křížek T, Sedlák D, Bartůněk P, Krásný L, Rejman D.

J Med Chem. 2017 Jul 27;60(14):6098-6118. doi: 10.1021/acs.jmedchem.7b00355. Epub 2017 Jul 12.

PMID:
28654257
4.

The extent of the temperature-induced membrane remodeling in two closely related Bordetella species reflects their adaptation to diverse environmental niches.

Seydlova G, Beranova J, Bibova I, Dienstbier A, Drzmisek J, Masin J, Fiser R, Konopasek I, Vecerek B.

J Biol Chem. 2017 May 12;292(19):8048-8058. doi: 10.1074/jbc.M117.781559. Epub 2017 Mar 27.

5.

Bacillus subtilis alters the proportion of major membrane phospholipids in response to surfactin exposure.

Uttlová P, Pinkas D, Bechyňková O, Fišer R, Svobodová J, Seydlová G.

Biochim Biophys Acta. 2016 Dec;1858(12):2965-2971. doi: 10.1016/j.bbamem.2016.09.006. Epub 2016 Sep 9.

6.

Insights into the Mechanism of Action of Bactericidal Lipophosphonoxins.

Panova N, Zborníková E, Šimák O, Pohl R, Kolář M, Bogdanová K, Večeřová R, Seydlová G, Fišer R, Hadravová R, Šanderová H, Vítovská D, Šiková M, Látal T, Lovecká P, Barvík I, Krásný L, Rejman D.

PLoS One. 2015 Dec 30;10(12):e0145918. doi: 10.1371/journal.pone.0145918. eCollection 2015.

7.

Analysis of phosphate and phosphate containing headgroups enzymatically cleaved from phospholipids of Bacillus subtilis by capillary electrophoresis.

Bierhanzl VM, Riesová M, Taraba L, Čabala R, Seydlová G.

Anal Bioanal Chem. 2015 Sep;407(23):7215-20. doi: 10.1007/s00216-015-8885-x. Epub 2015 Jul 14.

PMID:
26168970
8.

Sensitivity of bacteria to diamond nanoparticles of various size differs in gram-positive and gram-negative cells.

Beranová J, Seydlová G, Kozak H, Benada O, Fišer R, Artemenko A, Konopásek I, Kromka A.

FEMS Microbiol Lett. 2014 Feb;351(2):179-86. doi: 10.1111/1574-6968.12373. Epub 2014 Jan 31.

9.

Surfactin production enhances the level of cardiolipin in the cytoplasmic membrane of Bacillus subtilis.

Seydlová G, Fišer R, Cabala R, Kozlík P, Svobodová J, Pátek M.

Biochim Biophys Acta. 2013 Nov;1828(11):2370-8. doi: 10.1016/j.bbamem.2013.06.032. Epub 2013 Jul 8.

10.

Rapid and effective method for the separation of Bacillus subtilis vegetative cells and spores.

Seydlová G, Svobodová J.

Folia Microbiol (Praha). 2012 Sep;57(5):455-7. doi: 10.1007/s12223-012-0157-y. Epub 2012 May 16. No abstract available.

PMID:
22585313
11.

DnaK and GroEL chaperones are recruited to the Bacillus subtilis membrane after short-term ethanol stress.

Seydlová G, Halada P, Fišer R, Toman O, Ulrych A, Svobodová J.

J Appl Microbiol. 2012 Apr;112(4):765-74. doi: 10.1111/j.1365-2672.2012.05238.x. Epub 2012 Feb 7.

12.

Development of membrane lipids in the surfactin producer Bacillus subtilis.

Seydlová G, Svobodová J.

Folia Microbiol (Praha). 2008;53(4):303-7. doi: 10.1007/s12223-008-0047-5. Epub 2008 Aug 31.

PMID:
18759113

Supplemental Content

Loading ...
Support Center