Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 71

1.

The Thermodynamics of Ligand Binding to the Aminoglycoside O-Nucleotidyltransferase(4') and Variants Yields Clues about Thermophilic Properties.

Kocaman S, Serpersu EH.

Biochemistry. 2019 Mar 26;58(12):1579-1586. doi: 10.1021/acs.biochem.8b01201. Epub 2019 Mar 6.

PMID:
30793594
2.

Encoding of Promiscuity in an Aminoglycoside Acetyltransferase.

Kumar P, Selvaraj B, Serpersu EH, Cuneo MJ.

J Med Chem. 2018 Nov 21;61(22):10218-10227. doi: 10.1021/acs.jmedchem.8b01393. Epub 2018 Oct 31.

PMID:
30347146
3.

A low-barrier hydrogen bond mediates antibiotic resistance in a noncanonical catalytic triad.

Kumar P, Serpersu EH, Cuneo MJ.

Sci Adv. 2018 Apr 4;4(4):eaas8667. doi: 10.1126/sciadv.aas8667. eCollection 2018 Apr.

4.

Thermophilic Enzyme or Mesophilic Enzyme with Enhanced Thermostability: Can We Draw a Line?

Jing X, Evangelista Falcon W, Baudry J, Serpersu EH.

J Phys Chem B. 2017 Jul 27;121(29):7086-7094. doi: 10.1021/acs.jpcb.7b04519. Epub 2017 Jul 19.

PMID:
28689415
5.

Thermodynamics of an aminoglycoside modifying enzyme with low substrate promiscuity: The aminoglycoside N3 acetyltransferase-VIa.

Kumar P, Serpersu EH.

Proteins. 2017 Jul;85(7):1258-1265. doi: 10.1002/prot.25286. Epub 2017 Mar 29.

PMID:
28316100
6.

Aminoglycoside binding and catalysis specificity of aminoglycoside 2″-phosphotransferase IVa: A thermodynamic, structural and kinetic study.

Kaplan E, Guichou JF, Chaloin L, Kunzelmann S, Leban N, Serpersu EH, Lionne C.

Biochim Biophys Acta. 2016 Apr;1860(4):802-13. doi: 10.1016/j.bbagen.2016.01.016. Epub 2016 Jan 21.

7.

Correction to Thermodynamic Characterization of a Thermostable Antibiotic Resistance Enzyme, the Aminoglycoside Nucleotidyltransferase (4').

Jing X, Wright E, Bible AN, Peterson CB, Alexandre G, Bruce BD, Serpersu EH.

Biochemistry. 2015 Aug 18;54(32):5120. doi: 10.1021/acs.biochem.5b00760. Epub 2015 Aug 7.

PMID:
26252172
8.

Solvent reorganization plays a temperature-dependent role in antibiotic selection by a thermostable aminoglycoside nucleotidyltransferase-4'.

Jing X, Serpersu EH.

Biochemistry. 2014 Sep 2;53(34):5544-50. doi: 10.1021/bi5006283. Epub 2014 Aug 20.

PMID:
25093604
9.

Protein dynamics are influenced by the order of ligand binding to an antibiotic resistance enzyme.

Norris AL, Nickels J, Sokolov AP, Serpersu EH.

Biochemistry. 2014 Jan 14;53(1):30-8. doi: 10.1021/bi401635r. Epub 2013 Dec 24.

PMID:
24320996
10.

Ligand promiscuity through the eyes of the aminoglycoside N3 acetyltransferase IIa.

Norris AL, Serpersu EH.

Protein Sci. 2013 Jul;22(7):916-28. doi: 10.1002/pro.2273.

11.

Transient kinetics of aminoglycoside phosphotransferase(3')-IIIa reveals a potential drug target in the antibiotic resistance mechanism.

Lallemand P, Leban N, Kunzelmann S, Chaloin L, Serpersu EH, Webb MR, Barman T, Lionne C.

FEBS Lett. 2012 Nov 30;586(23):4223-7. doi: 10.1016/j.febslet.2012.10.027. Epub 2012 Oct 26.

12.

Thermodynamic characterization of a thermostable antibiotic resistance enzyme, the aminoglycoside nucleotidyltransferase (4').

Jing X, Wright E, Bible AN, Peterson CB, Alexandre G, Bruce BD, Serpersu EH.

Biochemistry. 2012 Nov 13;51(45):9147-55. doi: 10.1021/bi301126g. Epub 2012 Nov 2. Erratum in: Biochemistry. 2015 Aug 18;54(32):5120.

PMID:
23066871
13.

Effect of protein dynamics and solvent in ligand recognition by promiscuous aminoglycoside-modifying enzymes.

Serpersu EH, Norris AL.

Adv Carbohydr Chem Biochem. 2012;67:221-48. doi: 10.1016/B978-0-12-396527-1.00005-X. Review. No abstract available.

PMID:
22794185
14.

Coenzyme A binding to the aminoglycoside acetyltransferase (3)-IIIb increases conformational sampling of antibiotic binding site.

Hu X, Norris AL, Baudry J, Serpersu EH.

Biochemistry. 2011 Dec 6;50(48):10559-65. doi: 10.1021/bi201008f. Epub 2011 Nov 9.

PMID:
22026726
15.

Antibiotic selection by the promiscuous aminoglycoside acetyltransferase-(3)-IIIb is thermodynamically achieved through the control of solvent rearrangement.

Norris AL, Serpersu EH.

Biochemistry. 2011 Nov 1;50(43):9309-17. doi: 10.1021/bi2011916. Epub 2011 Oct 10.

PMID:
21958034
16.

ATP binding enables broad antibiotic selectivity of aminoglycoside phosphotransferase(3')-IIIa: an elastic network analysis.

Wieninger SA, Serpersu EH, Ullmann GM.

J Mol Biol. 2011 Jun 10;409(3):450-65. doi: 10.1016/j.jmb.2011.03.061. Epub 2011 Apr 6.

PMID:
21477597
17.

Interactions of coenzyme A with the aminoglycoside acetyltransferase (3)-IIIb and thermodynamics of a ternary system.

Norris AL, Serpersu EH.

Biochemistry. 2010 May 18;49(19):4036-42. doi: 10.1021/bi1001568.

PMID:
20387904
18.

Thermodynamics and kinetics of association of antibiotics with the aminoglycoside acetyltransferase (3)-IIIb, a resistance-causing enzyme.

Norris AL, Ozen C, Serpersu EH.

Biochemistry. 2010 May 18;49(19):4027-35. doi: 10.1021/bi100155j. Erratum in: Biochemistry. 2013 Oct 29;52(43):7702.

PMID:
20387903
19.

Backbone resonance assignments of a promiscuous aminoglycoside antibiotic resistance enzyme; the aminoglycoside phosphotransferase(3')-IIIa.

Serpersu EH, Ozen C, Norris AL, Steren C, Whittemore N.

Biomol NMR Assign. 2010 Apr;4(1):9-12. doi: 10.1007/s12104-009-9195-z. Epub 2009 Nov 8.

PMID:
19898995
20.
21.

Deciphering interactions of the aminoglycoside phosphotransferase(3')-IIIa with its ligands.

Wu L, Serpersu EH.

Biopolymers. 2009 Sep;91(9):801-9. doi: 10.1002/bip.21251. Erratum in: Biopolymers. 2014 Jul;101(7):819.

PMID:
19437437
22.

Studies of enzymes that cause resistance to aminoglycosides antibiotics.

Serpersu EH, Ozen C, Wright E.

Methods Mol Med. 2008;142:261-71. doi: 10.1007/978-1-59745-246-5_20.

PMID:
18437320
23.

Detection of specific solvent rearrangement regions of an enzyme: NMR and ITC studies with aminoglycoside phosphotransferase(3')-IIIa.

Ozen C, Norris AL, Land ML, Tjioe E, Serpersu EH.

Biochemistry. 2008 Jan 8;47(1):40-9. Epub 2007 Dec 8.

PMID:
18067326
24.

Dissection of aminoglycoside-enzyme interactions: a calorimetric and NMR study of neomycin B binding to the aminoglycoside phosphotransferase(3')-IIIa.

Ozen C, Malek JM, Serpersu EH.

J Am Chem Soc. 2006 Nov 29;128(47):15248-54. Erratum in: J Am Chem Soc. 2007 Sep 26;129(38):11872.

PMID:
17117877
25.

Molecular determinants of affinity for aminoglycoside binding to the aminoglycoside nucleotidyltransferase(2'')-Ia.

Wright E, Serpersu EH.

Biochemistry. 2006 Aug 29;45(34):10243-50. Erratum in: Biochemistry. 2007 Sep 4;46(35):10236.

PMID:
16922499
26.

Discovery of non-carbohydrate inhibitors of aminoglycoside-modifying enzymes.

Welch KT, Virga KG, Whittemore NA, Ozen C, Wright E, Brown CL, Lee RE, Serpersu EH.

Bioorg Med Chem. 2005 Nov 15;13(22):6252-63.

PMID:
16140014
28.

Hydrogen-deuterium (H/D) exchange mapping of Abeta 1-40 amyloid fibril secondary structure using nuclear magnetic resonance spectroscopy.

Whittemore NA, Mishra R, Kheterpal I, Williams AD, Wetzel R, Serpersu EH.

Biochemistry. 2005 Mar 22;44(11):4434-41.

PMID:
15766273
29.
30.

Assignment of the four disulfides in the N-terminal somatomedin B domain of native vitronectin isolated from human plasma.

Horn NA, Hurst GB, Mayasundari A, Whittemore NA, Serpersu EH, Peterson CB.

J Biol Chem. 2004 Aug 20;279(34):35867-78. Epub 2004 Jun 1.

31.
32.

The solution structure of the N-terminal domain of human vitronectin: proximal sites that regulate fibrinolysis and cell migration.

Mayasundari A, Whittemore NA, Serpersu EH, Peterson CB.

J Biol Chem. 2004 Jul 9;279(28):29359-66. Epub 2004 Apr 30.

33.

Metallohistins: a new class of plant metal-binding proteins.

Gupta RK, Dobritsa SV, Stiles CA, Essington ME, Liu Z, Chen CH, Serpersu EH, Mullin BC.

J Protein Chem. 2002 Nov;21(8):529-36.

PMID:
12638655
35.

Cloning, overexpression, and purification of aminoglycoside antibiotic nucleotidyltransferase (2'')-Ia: conformational studies with bound substrates.

Ekman DR, DiGiammarino EL, Wright E, Witter ED, Serpersu EH.

Biochemistry. 2001 Jun 19;40(24):7017-24.

PMID:
11401545
36.

Conformations of antibiotics in active sites of aminoglycoside-detoxifying enzymes.

Serpersu EH, Cox JR, DiGiammarino EL, Mohler ML, Ekman DR, Akal-Strader A, Owston M.

Cell Biochem Biophys. 2000;33(3):309-21. Review. No abstract available.

PMID:
11325048
37.

Aminoglycoside antibiotics bound to aminoglycoside-detoxifying enzymes and RNA adopt similar conformations.

Cox JR, Ekman DR, DiGiammarino EL, Akal-Strader A, Serpersu EH.

Cell Biochem Biophys. 2000;33(3):297-308.

PMID:
11325047
38.

Affinity labelling with MgATP analogues reveals coexisting Na+ and K+ forms of the alpha-subunits of Na+/K+-ATPase.

Antolovic R, Hamer E, Serpersu EH, Kost H, Linnertz H, Kovarik Z, Schoner W.

Eur J Biochem. 1999 Apr;261(1):181-9.

39.
40.

Identification of a catalytic aspartyl residue of D-ribulose 5-phosphate 3-epimerase by site-directed mutagenesis.

Chen YR, Larimer FW, Serpersu EH, Hartman FC.

J Biol Chem. 1999 Jan 22;274(4):2132-6.

41.

Peptide inhibition of ENaC.

Ismailov II, Shlyonsky VG, Serpersu EH, Fuller CM, Cheung HC, Muccio D, Berdiev BK, Benos DJ.

Biochemistry. 1999 Jan 5;38(1):354-63.

PMID:
9890917
42.

Structure-function analysis of a conserved aromatic cluster in the N-terminal domain of human epidermal growth factor.

Murray MB, Tadaki DK, Campion SR, Lamerdin JA, Serpersu EH, Bradrick TD, Niyogi SK.

Protein Eng. 1998 Nov;11(11):1041-50.

PMID:
9876925
45.
46.

The functional importance of Leu15 of human epidermal growth factor in receptor binding and activation.

Nandagopal K, Tadaki DK, Lamerdin JA, Serpersu EH, Niyogi SK.

Protein Eng. 1996 Sep;9(9):781-8.

PMID:
8888144
47.
49.

Kinetic, binding, and NMR studies of perdeuterated yeast phosphoglycerate kinase and its interactions with substrates.

Shibata CG, Gregory JD, Gerhardt BS, Serpersu EH.

Arch Biochem Biophys. 1995 May 10;319(1):204-10.

PMID:
7771785
50.

Conformational changes in yeast phosphoglycerate kinase upon substrate binding.

Henderson SJ, Serpersu EH, Gerhardt BS, Bunick GJ.

Biophys Chem. 1994 Dec;53(1-2):95-104.

PMID:
7841334

Supplemental Content

Loading ...
Support Center