Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 85

1.

Multivariate analysis of BOLD activation patterns recovers graded depth representations in human visual and parietal cortex.

Henderson M, Vo V, Chunharas C, Sprague T, Serences J.

eNeuro. 2019 Jul 8. pii: ENEURO.0362-18.2019. doi: 10.1523/ENEURO.0362-18.2019. [Epub ahead of print]

PMID:
31285275
Free Article
2.

Coexisting representations of sensory and mnemonic information in human visual cortex.

Rademaker RL, Chunharas C, Serences JT.

Nat Neurosci. 2019 Jul 1. doi: 10.1038/s41593-019-0428-x. [Epub ahead of print]

PMID:
31263205
3.

Alpha-band oscillations track the retrieval of precise spatial representations from long-term memory.

Sutterer DW, Foster JJ, Serences JT, Vogel EK, Awh E.

J Neurophysiol. 2019 Jun 12. doi: 10.1152/jn.00268.2019. [Epub ahead of print]

PMID:
31188708
4.

Functional MRI and EEG index complementary attentional modulations.

Itthipuripat S, Sprague TC, Serences JT.

J Neurosci. 2019 May 24. pii: 2519-18. doi: 10.1523/JNEUROSCI.2519-18.2019. [Epub ahead of print]

PMID:
31127004
5.

Dissociating the impact of attention and expectation on early sensory processing.

Rungratsameetaweemana N, Serences JT.

Curr Opin Psychol. 2019 Mar 23;29:181-186. doi: 10.1016/j.copsyc.2019.03.014. [Epub ahead of print] Review.

PMID:
31022561
6.

When Conflict Cannot be Avoided: Relative Contributions of Early Selection and Frontal Executive Control in Mitigating Stroop Conflict.

Itthipuripat S, Deering S, Serences JT.

Cereb Cortex. 2019 Mar 16. pii: bhz042. doi: 10.1093/cercor/bhz042. [Epub ahead of print]

PMID:
30877786
7.

Human frontoparietal cortex represents behaviorally relevant target status based on abstract object features.

Henderson M, Serences JT.

J Neurophysiol. 2019 Apr 1;121(4):1410-1427. doi: 10.1152/jn.00015.2019. Epub 2019 Feb 13.

PMID:
30759040
8.

Separating memoranda in depth increases visual working memory performance.

Chunharas C, Rademaker RL, Sprague TC, Brady TF, Serences JT.

J Vis. 2019 Jan 2;19(1):4. doi: 10.1167/19.1.4.

9.

Having More Choices Changes How Human Observers Weight Stable Sensory Evidence.

Itthipuripat S, Cha K, Deering S, Salazar AM, Serences JT.

J Neurosci. 2018 Oct 3;38(40):8635-8649. doi: 10.1523/JNEUROSCI.0440-18.2018. Epub 2018 Aug 24.

10.

Expectations Do Not Alter Early Sensory Processing during Perceptual Decision-Making.

Rungratsameetaweemana N, Itthipuripat S, Salazar A, Serences JT.

J Neurosci. 2018 Jun 13;38(24):5632-5648. doi: 10.1523/JNEUROSCI.3638-17.2018. Epub 2018 May 17.

11.

Building on a Solid Baseline: Anticipatory Biases in Attention.

Nobre AC, Serences JT.

Trends Neurosci. 2018 Mar;41(3):120-122. doi: 10.1016/j.tins.2018.01.005.

12.

Dissociable signatures of visual salience and behavioral relevance across attentional priority maps in human cortex.

Sprague TC, Itthipuripat S, Vo VA, Serences JT.

J Neurophysiol. 2018 Jun 1;119(6):2153-2165. doi: 10.1152/jn.00059.2018. Epub 2018 Feb 28.

13.

Fluctuations in instantaneous frequency predict alpha amplitude during visual perception.

Nelli S, Itthipuripat S, Srinivasan R, Serences JT.

Nat Commun. 2017 Dec 12;8(1):2071. doi: 10.1038/s41467-017-02176-x.

14.

Feature-coding transitions to conjunction-coding with progression through human visual cortex.

Cowell RA, Leger KR, Serences JT.

J Neurophysiol. 2017 Dec 1;118(6):3194-3214. doi: 10.1152/jn.00503.2017. Epub 2017 Sep 20.

15.

Two different mechanisms support selective attention at different phases of training.

Itthipuripat S, Cha K, Byers A, Serences JT.

PLoS Biol. 2017 Jun 27;15(6):e2001724. doi: 10.1371/journal.pbio.2001724. eCollection 2017 Jun.

16.

Pinging the brain to reveal hidden memories.

Rademaker RL, Serences JT.

Nat Neurosci. 2017 May 25;20(6):767-769. doi: 10.1038/nn.4560. No abstract available.

17.

Alpha-Band Oscillations Enable Spatially and Temporally Resolved Tracking of Covert Spatial Attention.

Foster JJ, Sutterer DW, Serences JT, Vogel EK, Awh E.

Psychol Sci. 2017 Jul;28(7):929-941. doi: 10.1177/0956797617699167. Epub 2017 May 24.

18.

Spatial Tuning Shifts Increase the Discriminability and Fidelity of Population Codes in Visual Cortex.

Vo VA, Sprague TC, Serences JT.

J Neurosci. 2017 Mar 22;37(12):3386-3401. doi: 10.1523/JNEUROSCI.3484-16.2017. Epub 2017 Feb 27.

19.

Acute Exercise Modulates Feature-selective Responses in Human Cortex.

Bullock T, Elliott JC, Serences JT, Giesbrecht B.

J Cogn Neurosci. 2017 Apr;29(4):605-618. doi: 10.1162/jocn_a_01082. Epub 2016 Nov 29.

PMID:
27897672
20.

Neural mechanisms of information storage in visual short-term memory.

Serences JT.

Vision Res. 2016 Nov;128:53-67. doi: 10.1016/j.visres.2016.09.010. Epub 2016 Oct 4. Review.

21.

Restoring Latent Visual Working Memory Representations in Human Cortex.

Sprague TC, Ester EF, Serences JT.

Neuron. 2016 Aug 3;91(3):694-707. doi: 10.1016/j.neuron.2016.07.006.

22.

Feature-Selective Attentional Modulations in Human Frontoparietal Cortex.

Ester EF, Sutterer DW, Serences JT, Awh E.

J Neurosci. 2016 Aug 3;36(31):8188-99. doi: 10.1523/JNEUROSCI.3935-15.2016.

23.

The topography of alpha-band activity tracks the content of spatial working memory.

Foster JJ, Sutterer DW, Serences JT, Vogel EK, Awh E.

J Neurophysiol. 2016 Jan 1;115(1):168-77. doi: 10.1152/jn.00860.2015. Epub 2015 Oct 14.

24.

Integrating Levels of Analysis in Systems and Cognitive Neurosciences: Selective Attention as a Case Study.

Itthipuripat S, Serences JT.

Neuroscientist. 2016 Jun;22(3):225-37. doi: 10.1177/1073858415603312. Epub 2015 Aug 25.

PMID:
26307043
25.

Parietal and Frontal Cortex Encode Stimulus-Specific Mnemonic Representations during Visual Working Memory.

Ester EF, Sprague TC, Serences JT.

Neuron. 2015 Aug 19;87(4):893-905. doi: 10.1016/j.neuron.2015.07.013. Epub 2015 Aug 6.

26.

Value-based attentional capture influences context-dependent decision-making.

Itthipuripat S, Cha K, Rangsipat N, Serences JT.

J Neurophysiol. 2015 Jul;114(1):560-9. doi: 10.1152/jn.00343.2015. Epub 2015 May 20.

27.

Visual attention mitigates information loss in small- and large-scale neural codes.

Sprague TC, Saproo S, Serences JT.

Trends Cogn Sci. 2015 Apr;19(4):215-26. doi: 10.1016/j.tics.2015.02.005. Epub 2015 Mar 11. Review.

28.

Substitution and pooling in visual crowding induced by similar and dissimilar distractors.

Ester EF, Zilber E, Serences JT.

J Vis. 2015 Jan 8;15(1):15.1.4. doi: 10.1167/15.1.4.

29.

Sensory gain outperforms efficient readout mechanisms in predicting attention-related improvements in behavior.

Itthipuripat S, Ester EF, Deering S, Serences JT.

J Neurosci. 2014 Oct 1;34(40):13384-98. doi: 10.1523/JNEUROSCI.2277-14.2014.

30.

Reconstructions of information in visual spatial working memory degrade with memory load.

Sprague TC, Ester EF, Serences JT.

Curr Biol. 2014 Sep 22;24(18):2174-2180. doi: 10.1016/j.cub.2014.07.066. Epub 2014 Sep 4.

31.

Enhanced attentional gain as a mechanism for generalized perceptual learning in human visual cortex.

Byers A, Serences JT.

J Neurophysiol. 2014 Sep 1;112(5):1217-27. doi: 10.1152/jn.00353.2014. Epub 2014 Jun 11.

32.

Induced α rhythms track the content and quality of visual working memory representations with high temporal precision.

Anderson DE, Serences JT, Vogel EK, Awh E.

J Neurosci. 2014 May 28;34(22):7587-99. doi: 10.1523/JNEUROSCI.0293-14.2014. Retraction in: J Neurosci. 2015 Feb 11;35(6):2838.

33.

Variability in visual working memory ability limits the efficiency of perceptual decision making.

Ester EF, Ho TC, Brown SD, Serences JT.

J Vis. 2014 Apr 2;14(4). pii: 2. doi: 10.1167/14.4.2.

34.

Attention improves transfer of motion information between V1 and MT.

Saproo S, Serences JT.

J Neurosci. 2014 Mar 5;34(10):3586-96. doi: 10.1523/JNEUROSCI.3484-13.2014.

35.

The positional-specificity effect reveals a passive-trace contribution to visual short-term memory.

Postle BR, Awh E, Serences JT, Sutterer DW, D'Esposito M.

PLoS One. 2013 Dec 26;8(12):e83483. doi: 10.1371/journal.pone.0083483. eCollection 2013.

36.

Changing the spatial scope of attention alters patterns of neural gain in human cortex.

Itthipuripat S, Garcia JO, Rungratsameetaweemana N, Sprague TC, Serences JT.

J Neurosci. 2014 Jan 1;34(1):112-23. doi: 10.1523/JNEUROSCI.3943-13.2014.

37.

Attention modulates spatial priority maps in the human occipital, parietal and frontal cortices.

Sprague TC, Serences JT.

Nat Neurosci. 2013 Dec;16(12):1879-87. doi: 10.1038/nn.3574. Epub 2013 Nov 10.

38.

Attending multiple items decreases the selectivity of population responses in human primary visual cortex.

Anderson DE, Ester EF, Serences JT, Awh E.

J Neurosci. 2013 May 29;33(22):9273-82. doi: 10.1523/JNEUROSCI.0239-13.2013. Retraction in: J Neurosci. 2016 Apr 13;36(15):4404.

39.

Individual differences in attention strategies during detection, fine discrimination, and coarse discrimination.

Bridwell DA, Hecker EA, Serences JT, Srinivasan R.

J Neurophysiol. 2013 Aug;110(3):784-94. doi: 10.1152/jn.00520.2012. Epub 2013 May 15.

40.

Near-real-time feature-selective modulations in human cortex.

Garcia JO, Srinivasan R, Serences JT.

Curr Biol. 2013 Mar 18;23(6):515-22. doi: 10.1016/j.cub.2013.02.013. Epub 2013 Mar 7.

41.

A neural measure of precision in visual working memory.

Ester EF, Anderson DE, Serences JT, Awh E.

J Cogn Neurosci. 2013 May;25(5):754-61. doi: 10.1162/jocn_a_00357. Epub 2013 Mar 7.

42.

Temporal dynamics of divided spatial attention.

Itthipuripat S, Garcia JO, Serences JT.

J Neurophysiol. 2013 May;109(9):2364-73. doi: 10.1152/jn.01051.2012. Epub 2013 Feb 6.

43.

Perceptual consequences of feature-based attentional enhancement and suppression.

Ho TC, Brown S, Abuyo NA, Ku EH, Serences JT.

J Vis. 2012 Aug 24;12(8):15. doi: 10.1167/12.8.15.

44.

Exploring the relationship between perceptual learning and top-down attentional control.

Byers A, Serences JT.

Vision Res. 2012 Dec 1;74:30-9. doi: 10.1016/j.visres.2012.07.008. Epub 2012 Jul 28. Review.

45.

The optimality of sensory processing during the speed-accuracy tradeoff.

Ho T, Brown S, van Maanen L, Forstmann BU, Wagenmakers EJ, Serences JT.

J Neurosci. 2012 Jun 6;32(23):7992-8003. doi: 10.1523/JNEUROSCI.0340-12.2012.

46.

Optimal deployment of attentional gain during fine discriminations.

Scolari M, Byers A, Serences JT.

J Neurosci. 2012 May 30;32(22):7723-33. doi: 10.1523/JNEUROSCI.5558-11.2012.

47.
48.

Neural correlates of trial-to-trial fluctuations in response caution.

van Maanen L, Brown SD, Eichele T, Wagenmakers EJ, Ho T, Serences J, Forstmann BU.

J Neurosci. 2011 Nov 30;31(48):17488-95. doi: 10.1523/JNEUROSCI.2924-11.2011.

49.

Computational advances towards linking BOLD and behavior.

Serences JT, Saproo S.

Neuropsychologia. 2012 Mar;50(4):435-46. doi: 10.1016/j.neuropsychologia.2011.07.013. Epub 2011 Jul 23. Review.

50.

Reciprocal relations between cognitive neuroscience and formal cognitive models: opposites attract?

Forstmann BU, Wagenmakers EJ, Eichele T, Brown S, Serences JT.

Trends Cogn Sci. 2011 Jun;15(6):272-9. doi: 10.1016/j.tics.2011.04.002. Epub 2011 May 24. Review.

Supplemental Content

Loading ...
Support Center