Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 37

1.

A Vegetable Fermentation Facility Hosts Distinct Microbiomes Reflecting the Production Environment.

Einson JE, Rani A, You X, Rodriguez AA, Randell CL, Barnaba T, Mammel MK, Kotewicz ML, Elkins CA, Sela DA.

Appl Environ Microbiol. 2018 Oct 30;84(22). pii: e01680-18. doi: 10.1128/AEM.01680-18. Print 2018 Nov 15.

PMID:
30171008
2.

Draft Genome Sequence of Bifidobacterium longum UMA026, Isolated from Holstein Dairy Cow Feces.

Albert K, Sela DA.

Genome Announc. 2018 Jun 21;6(25). pii: e00559-18. doi: 10.1128/genomeA.00559-18.

3.

The comparative genomics of Bifidobacterium callitrichos reflects dietary carbohydrate utilization within the common marmoset gut.

Albert K, Rani A, Sela DA.

Microb Genom. 2018 Jun 15. doi: 10.1099/mgen.0.000183. [Epub ahead of print]

4.
5.

Peyer's patch-specific Lactobacillus reuteri strains increase extracellular microbial DNA and antimicrobial peptide expression in the mouse small intestine.

Qi C, Sun J, Li Y, Gu M, Goulette T, You X, Sela DA, Wang X, Xiao H.

Food Funct. 2018 May 23;9(5):2989-2997. doi: 10.1039/c8fo00109j.

PMID:
29774357
6.

Extending viability of Lactobacillus plantarum and Lactobacillus johnsonii by microencapsulation in alginate microgels.

Tiani KA, Yeung TW, McClements DJ, Sela DA.

Int J Food Sci Nutr. 2018 Mar;69(2):155-164. doi: 10.1080/09637486.2017.1343285. Epub 2017 Jul 6.

PMID:
28683582
7.

A human gut commensal ferments cranberry carbohydrates to produce formate.

Özcan E, Sun J, Rowley DC, Sela DA.

Appl Environ Microbiol. 2017 Jun 30. pii: AEM.01097-17. doi: 10.1128/AEM.01097-17. [Epub ahead of print]

8.

Draft Genome Sequences of Alloscardovia macacae UMA81211 and UMA81212, Isolated from the Feces of a Rhesus Macaque (Macaca mulatta).

Albert K, Sela DA.

Genome Announc. 2017 Jun 29;5(26). pii: e00581-17. doi: 10.1128/genomeA.00581-17.

9.

The Host Microbiome Regulates and Maintains Human Health: A Primer and Perspective for Non-Microbiologists.

Thomas S, Izard J, Walsh E, Batich K, Chongsathidkiet P, Clarke G, Sela DA, Muller AJ, Mullin JM, Albert K, Gilligan JP, DiGuilio K, Dilbarova R, Alexander W, Prendergast GC.

Cancer Res. 2017 Apr 15;77(8):1783-1812. doi: 10.1158/0008-5472.CAN-16-2929. Epub 2017 Mar 14. Review.

10.

Handling stress may confound murine gut microbiota studies.

Allen-Blevins CR, You X, Hinde K, Sela DA.

PeerJ. 2017 Jan 11;5:e2876. doi: 10.7717/peerj.2876. eCollection 2017.

11.

Genetic optimization of a bacteriophage-delivered alkaline phosphatase reporter to detect Escherichia coli.

Jackson AA, Hinkley TC, Talbert JN, Nugen SR, Sela DA.

Analyst. 2016 Oct 7;141(19):5543-8. doi: 10.1039/c6an00479b. Epub 2016 Jul 14.

PMID:
27412402
12.

Correction: Microencapsulation of probiotics in hydrogel particles: enhancing Lactococcus lactis subsp. cremoris LM0230 viability using calcium alginate beads.

Yeung TW, Arroyo-Maya IJ, McClements DJ, Sela DA.

Food Funct. 2016 Jun 15;7(6):2909. doi: 10.1039/c6fo90021f. Epub 2016 Jun 3.

PMID:
27258551
13.

Microencapsulation in Alginate and Chitosan Microgels to Enhance Viability of Bifidobacterium longum for Oral Delivery.

Yeung TW, Üçok EF, Tiani KA, McClements DJ, Sela DA.

Front Microbiol. 2016 Apr 19;7:494. doi: 10.3389/fmicb.2016.00494. eCollection 2016.

14.

Rapid screening of waterborne pathogens using phage-mediated separation coupled with real-time PCR detection.

Wang Z, Wang D, Kinchla AJ, Sela DA, Nugen SR.

Anal Bioanal Chem. 2016 Jun;408(15):4169-78. doi: 10.1007/s00216-016-9511-2. Epub 2016 Apr 12.

PMID:
27071764
15.

Bioengineering bacteriophages to enhance the sensitivity of phage amplification-based paper fluidic detection of bacteria.

Alcaine SD, Law K, Ho S, Kinchla AJ, Sela DA, Nugen SR.

Biosens Bioelectron. 2016 Aug 15;82:14-9. doi: 10.1016/j.bios.2016.03.047. Epub 2016 Mar 22.

PMID:
27031186
16.

The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility.

Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, Capanoglu E.

Nutrients. 2016 Feb 6;8(2):78. doi: 10.3390/nu8020078. Review.

17.

Development of a novel bacteriophage based biomagnetic separation method as an aid for sensitive detection of viable Escherichia coli.

Wang Z, Wang D, Chen J, Sela DA, Nugen SR.

Analyst. 2016 Feb 7;141(3):1009-16. doi: 10.1039/c5an01769f. Epub 2015 Dec 22.

PMID:
26689710
18.

Microencapsulation of probiotics in hydrogel particles: enhancing Lactococcus lactis subsp. cremoris LM0230 viability using calcium alginate beads.

Yeung TW, Arroyo-Maya IJ, McClements DJ, Sela DA.

Food Funct. 2016 Apr;7(4):1797-804. doi: 10.1039/c5fo00801h.

PMID:
26611443
19.

Validating bifidobacterial species and subspecies identity in commercial probiotic products.

Lewis ZT, Shani G, Masarweh CF, Popovic M, Frese SA, Sela DA, Underwood MA, Mills DA.

Pediatr Res. 2016 Mar;79(3):445-52. doi: 10.1038/pr.2015.244. Epub 2015 Nov 16.

20.

Erratum: Comparative transcriptomics reveals key differences in the response to milk oligosaccharides of infant gut-associated bifidobacteria.

Garrido D, Ruiz-Moyano S, Lemay DG, Sela DA, German JB, Mills DA.

Sci Rep. 2015 Nov 2;5:15311. doi: 10.1038/srep15311. No abstract available.

21.

Glycan cross-feeding activities between bifidobacteria under in vitro conditions.

Turroni F, Özcan E, Milani C, Mancabelli L, Viappiani A, van Sinderen D, Sela DA, Ventura M.

Front Microbiol. 2015 Sep 24;6:1030. doi: 10.3389/fmicb.2015.01030. eCollection 2015.

22.

Phage & phosphatase: a novel phage-based probe for rapid, multi-platform detection of bacteria.

Alcaine SD, Pacitto D, Sela DA, Nugen SR.

Analyst. 2015 Nov 21;140(22):7629-36. doi: 10.1039/c5an01181g.

PMID:
26421320
23.

Comparative transcriptomics reveals key differences in the response to milk oligosaccharides of infant gut-associated bifidobacteria.

Garrido D, Ruiz-Moyano S, Lemay DG, Sela DA, German JB, Mills DA.

Sci Rep. 2015 Sep 4;5:13517. doi: 10.1038/srep13517. Erratum in: Sci Rep. 2015;5:15311.

24.

Impact of ε-polylysine and pectin on the potential gastrointestinal fate of emulsified lipids: In vitro mouth, stomach and small intestine model.

Lopez-Pena CL, Zheng B, Sela DA, Decker EA, Xiao H, McClements DJ.

Food Chem. 2016 Feb 1;192:857-64. doi: 10.1016/j.foodchem.2015.07.054. Epub 2015 Jul 14.

PMID:
26304421
25.

Milk bioactives may manipulate microbes to mediate parent-offspring conflict.

Allen-Blevins CR, Sela DA, Hinde K.

Evol Med Public Health. 2015 Apr 2;2015(1):106-21. doi: 10.1093/emph/eov007. Review.

26.

The marriage of nutrigenomics with the microbiome: the case of infant-associated bifidobacteria and milk.

Sela DA, Mills DA.

Am J Clin Nutr. 2014 Mar;99(3):697S-703S. doi: 10.3945/ajcn.113.071795. Epub 2014 Jan 22.

27.

Bifidobacterium longum subsp. infantis ATCC 15697 α-fucosidases are active on fucosylated human milk oligosaccharides.

Sela DA, Garrido D, Lerno L, Wu S, Tan K, Eom HJ, Joachimiak A, Lebrilla CB, Mills DA.

Appl Environ Microbiol. 2012 Feb;78(3):795-803. doi: 10.1128/AEM.06762-11. Epub 2011 Dec 2.

28.

Bifidobacterial utilization of human milk oligosaccharides.

Sela DA.

Int J Food Microbiol. 2011 Sep 1;149(1):58-64. doi: 10.1016/j.ijfoodmicro.2011.01.025. Epub 2011 Jan 26. Review.

PMID:
21342711
29.

An infant-associated bacterial commensal utilizes breast milk sialyloligosaccharides.

Sela DA, Li Y, Lerno L, Wu S, Marcobal AM, German JB, Chen X, Lebrilla CB, Mills DA.

J Biol Chem. 2011 Apr 8;286(14):11909-18. doi: 10.1074/jbc.M110.193359. Epub 2011 Feb 2. Erratum in: J Biol Chem. 2011 Jul 1;286(26):23620.

30.

Broad conservation of milk utilization genes in Bifidobacterium longum subsp. infantis as revealed by comparative genomic hybridization.

LoCascio RG, Desai P, Sela DA, Weimer B, Mills DA.

Appl Environ Microbiol. 2010 Nov;76(22):7373-81. doi: 10.1128/AEM.00675-10. Epub 2010 Aug 27.

31.

Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides.

Sela DA, Mills DA.

Trends Microbiol. 2010 Jul;18(7):298-307. doi: 10.1016/j.tim.2010.03.008. Epub 2010 Apr 19. Review.

32.

Glycoprofiling bifidobacterial consumption of galacto-oligosaccharides by mass spectrometry reveals strain-specific, preferential consumption of glycans.

Barboza M, Sela DA, Pirim C, Locascio RG, Freeman SL, German JB, Mills DA, Lebrilla CB.

Appl Environ Microbiol. 2009 Dec;75(23):7319-25. doi: 10.1128/AEM.00842-09. Epub 2009 Oct 2.

33.

Comparative analyses of prophage-like elements present in bifidobacterial genomes.

Ventura M, Turroni F, Lima-Mendez G, Foroni E, Zomer A, Duranti S, Giubellini V, Bottacini F, Horvath P, Barrangou R, Sela DA, Mills DA, van Sinderen D.

Appl Environ Microbiol. 2009 Nov;75(21):6929-36. doi: 10.1128/AEM.01112-09. Epub 2009 Sep 4.

34.

The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome.

Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, Whitehead TR, Lapidus A, Rokhsar DS, Lebrilla CB, German JB, Price NP, Richardson PM, Mills DA.

Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18964-9. doi: 10.1073/pnas.0809584105. Epub 2008 Nov 24.

35.

Role of hypermutability in the evolution of the genus Oenococcus.

Marcobal AM, Sela DA, Wolf YI, Makarova KS, Mills DA.

J Bacteriol. 2008 Jan;190(2):564-70. Epub 2007 Nov 9.

36.

Glycoprofiling of bifidobacterial consumption of human milk oligosaccharides demonstrates strain specific, preferential consumption of small chain glycans secreted in early human lactation.

LoCascio RG, Ninonuevo MR, Freeman SL, Sela DA, Grimm R, Lebrilla CB, Mills DA, German JB.

J Agric Food Chem. 2007 Oct 31;55(22):8914-9. Epub 2007 Oct 5.

PMID:
17915960
37.

Characterization of the lactococcal group II intron target site in its native host.

Sela DA, Rawsthorne H, Mills DA.

Plasmid. 2007 Sep;58(2):127-39. Epub 2007 Apr 3.

PMID:
17408740

Supplemental Content

Support Center