Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 25

1.

A simple dual-inducible CRISPR interference system for multiple gene targeting in Corynebacterium glutamicum.

Gauttam R, Seibold GM, Mueller P, Weil T, Weiß T, Handrick R, Eikmanns BJ.

Plasmid. 2019 May;103:25-35. doi: 10.1016/j.plasmid.2019.04.001. Epub 2019 Apr 4.

PMID:
30954454
2.

Characterization of the biofilm phenotype of a Listeria monocytogenes mutant deficient in agr peptide sensing.

Zetzmann M, Bucur FI, Crauwels P, Borda D, Nicolau AI, Grigore-Gurgu L, Seibold GM, Riedel CU.

Microbiologyopen. 2019 Mar 6:e826. doi: 10.1002/mbo3.826. [Epub ahead of print]

3.

Substrate-dependent cluster density dynamics of Corynebacterium glutamicum phosphotransferase system permeases.

Martins GB, Giacomelli G, Goldbeck O, Seibold GM, Bramkamp M.

Mol Microbiol. 2019 May;111(5):1335-1354. doi: 10.1111/mmi.14224. Epub 2019 Mar 18.

PMID:
30748039
4.

Intracellular pHluorin as Sensor for Easy Assessment of Bacteriocin-Induced Membrane-Damage in Listeria monocytogenes.

Crauwels P, Schäfer L, Weixler D, Bar NS, Diep DB, Riedel CU, Seibold GM.

Front Microbiol. 2018 Dec 11;9:3038. doi: 10.3389/fmicb.2018.03038. eCollection 2018.

5.

Real Time Monitoring of NADPH Concentrations in Corynebacterium glutamicum and Escherichia coli via the Genetically Encoded Sensor mBFP.

Goldbeck O, Eck AW, Seibold GM.

Front Microbiol. 2018 Oct 24;9:2564. doi: 10.3389/fmicb.2018.02564. eCollection 2018.

6.

Production of the compatible solute α-D-glucosylglycerol by metabolically engineered Corynebacterium glutamicum.

Roenneke B, Rosenfeldt N, Derya SM, Novak JF, Marin K, Krämer R, Seibold GM.

Microb Cell Fact. 2018 Jun 16;17(1):94. doi: 10.1186/s12934-018-0939-2.

7.

Construction of pOGOduet - An inducible, bicistronic vector for synthesis of recombinant proteins in Corynebacterium glutamicum.

Goldbeck O, Seibold GM.

Plasmid. 2018 Jan;95:11-15. doi: 10.1016/j.plasmid.2018.01.001. Epub 2018 Jan 10.

PMID:
29331350
8.

Transcription of Sialic Acid Catabolism Genes in Corynebacterium glutamicum Is Subject to Catabolite Repression and Control by the Transcriptional Repressor NanR.

Uhde A, Brühl N, Goldbeck O, Matano C, Gurow O, Rückert C, Marin K, Wendisch VF, Krämer R, Seibold GM.

J Bacteriol. 2016 Jul 28;198(16):2204-18. doi: 10.1128/JB.00820-15. Print 2016 Aug 15.

9.

Transcription of malP is subject to phosphotransferase system-dependent regulation in Corynebacterium glutamicum.

Kuhlmann N, Petrov DP, Henrich AW, Lindner SN, Wendisch VF, Seibold GM.

Microbiology. 2015 Sep;161(9):1830-43. doi: 10.1099/mic.0.000134. Epub 2015 Jul 9.

PMID:
26296766
10.

The α-glucan phosphorylase MalP of Corynebacterium glutamicum is subject to transcriptional regulation and competitive inhibition by ADP-glucose.

Clermont L, Macha A, Müller LM, Derya SM, von Zaluskowski P, Eck A, Eikmanns BJ, Seibold GM.

J Bacteriol. 2015 Apr;197(8):1394-407. doi: 10.1128/JB.02395-14. Epub 2015 Feb 9.

11.

Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine.

Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Krämer R, Wendisch VF, Seibold GM.

Appl Microbiol Biotechnol. 2014 Jun;98(12):5633-43. doi: 10.1007/s00253-014-5676-9. Epub 2014 Mar 26.

PMID:
24668244
12.

Protein S-mycothiolation functions as redox-switch and thiol protection mechanism in Corynebacterium glutamicum under hypochlorite stress.

Chi BK, Busche T, Van Laer K, Bäsell K, Becher D, Clermont L, Seibold GM, Persicke M, Kalinowski J, Messens J, Antelmann H.

Antioxid Redox Signal. 2014 Feb 1;20(4):589-605. doi: 10.1089/ars.2013.5423. Epub 2013 Sep 18.

13.

Inactivation of the phosphoglucomutase gene pgm in Corynebacterium glutamicum affects cell shape and glycogen metabolism.

Seibold GM, Eikmanns BJ.

Biosci Rep. 2013 Aug 23;33(4). pii: e00059. doi: 10.1042/BSR20130076.

14.

Maltose uptake by the novel ABC transport system MusEFGK2I causes increased expression of ptsG in Corynebacterium glutamicum.

Henrich A, Kuhlmann N, Eck AW, Krämer R, Seibold GM.

J Bacteriol. 2013 Jun;195(11):2573-84. doi: 10.1128/JB.01629-12. Epub 2013 Mar 29.

15.

Phosphotransferase system-mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains.

Lindner SN, Petrov DP, Hagmann CT, Henrich A, Krämer R, Eikmanns BJ, Wendisch VF, Seibold GM.

Appl Environ Microbiol. 2013 Apr;79(8):2588-95. doi: 10.1128/AEM.03231-12. Epub 2013 Feb 8.

16.

Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum.

Uhde A, Youn JW, Maeda T, Clermont L, Matano C, Krämer R, Wendisch VF, Seibold GM, Marin K.

Appl Microbiol Biotechnol. 2013 Feb;97(4):1679-87. doi: 10.1007/s00253-012-4313-8. Epub 2012 Aug 2.

PMID:
22854894
17.

Impact of a new glucose utilization pathway in amino acid-producing Corynebacterium glutamicum.

Lindner SN, Seibold GM, Krämer R, Wendisch VF.

Bioeng Bugs. 2011 Sep-Oct;2(5):291-5. doi: 10.4161/bbug.2.5.17116. Epub 2011 Sep 1.

PMID:
22008639
18.

The glgB-encoded glycogen branching enzyme is essential for glycogen accumulation in Corynebacterium glutamicum.

Seibold GM, Breitinger KJ, Kempkes R, Both L, Krämer M, Dempf S, Eikmanns BJ.

Microbiology. 2011 Nov;157(Pt 11):3243-51. doi: 10.1099/mic.0.051565-0. Epub 2011 Sep 8.

PMID:
21903753
19.

Phosphotransferase system-independent glucose utilization in corynebacterium glutamicum by inositol permeases and glucokinases.

Lindner SN, Seibold GM, Henrich A, Krämer R, Wendisch VF.

Appl Environ Microbiol. 2011 Jun;77(11):3571-81. doi: 10.1128/AEM.02713-10. Epub 2011 Apr 8.

20.

Link between phosphate starvation and glycogen metabolism in Corynebacterium glutamicum, revealed by metabolomics.

Woo HM, Noack S, Seibold GM, Willbold S, Eikmanns BJ, Bott M.

Appl Environ Microbiol. 2010 Oct;76(20):6910-9. doi: 10.1128/AEM.01375-10. Epub 2010 Aug 27.

21.

Carbohydrate metabolism in Corynebacterium glutamicum and applications for the metabolic engineering of L-lysine production strains.

Blombach B, Seibold GM.

Appl Microbiol Biotechnol. 2010 May;86(5):1313-22. doi: 10.1007/s00253-010-2537-z. Epub 2010 Mar 24. Review.

PMID:
20333512
22.

The transcriptional regulators RamA and RamB are involved in the regulation of glycogen synthesis in Corynebacterium glutamicum.

Seibold GM, Hagmann CT, Schietzel M, Emer D, Auchter M, Schreiner J, Eikmanns BJ.

Microbiology. 2010 Apr;156(Pt 4):1256-63. doi: 10.1099/mic.0.036756-0. Epub 2010 Jan 7.

PMID:
20056699
23.

Increased glucose utilization in Corynebacterium glutamicum by use of maltose, and its application for the improvement of L-valine productivity.

Krause FS, Henrich A, Blombach B, Krämer R, Eikmanns BJ, Seibold GM.

Appl Environ Microbiol. 2010 Jan;76(1):370-4. doi: 10.1128/AEM.01553-09. Epub 2009 Oct 30.

24.

Roles of maltodextrin and glycogen phosphorylases in maltose utilization and glycogen metabolism in Corynebacterium glutamicum.

Seibold GM, Wurst M, Eikmanns BJ.

Microbiology. 2009 Feb;155(Pt 2):347-58. doi: 10.1099/mic.0.023614-0.

PMID:
19202084
25.

Supplemental Content

Loading ...
Support Center