Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 150

1.

High-Resolution ENDOR Spectroscopy Combined with Quantum Chemical Calculations Reveals the Structure of Nitrogenase Janus Intermediate E4(4H).

Hoeke V, Tociu L, Case DA, Seefeldt LC, Raugei S, Hoffman BM.

J Am Chem Soc. 2019 Jul 16. doi: 10.1021/jacs.9b04474. [Epub ahead of print]

PMID:
31310109
2.

Mo-, V-, and Fe-Nitrogenases Use a Universal Eight-Electron Reductive-Elimination Mechanism To Achieve N2 Reduction.

Harris DF, Lukoyanov DA, Kallas H, Trncik C, Yang ZY, Compton P, Kelleher N, Einsle O, Dean DR, Hoffman BM, Seefeldt LC.

Biochemistry. 2019 Jul 19. doi: 10.1021/acs.biochem.9b00468. [Epub ahead of print]

PMID:
31283201
3.

The NifZ accessory protein has an equivalent function in maturation of both nitrogenase MoFe protein P-clusters.

Jimenez-Vicente E, Yang ZY, Martin Del Campo JS, Cash VL, Seefeldt LC, Dean DR.

J Biol Chem. 2019 Apr 19;294(16):6204-6213. doi: 10.1074/jbc.RA119.007905. Epub 2019 Mar 7.

4.

The ammonium transporter AmtB and the PII signal transduction protein GlnZ are required to inhibit DraG in Azospirillum brasilense.

Moure VR, Siöberg CLB, Valdameri G, Nji E, Oliveira MAS, Gerdhardt ECM, Pedrosa FO, Mitchell DA, Seefeldt LC, Huergo LF, Högbom M, Nordlund S, Souza EM.

FEBS J. 2019 Mar;286(6):1214-1229. doi: 10.1111/febs.14745. Epub 2019 Feb 12.

PMID:
30633437
5.

Application of affinity purification methods for analysis of the nitrogenase system from Azotobacter vinelandii.

Jiménez-Vicente E, Martin Del Campo JS, Yang ZY, Cash VL, Dean DR, Seefeldt LC.

Methods Enzymol. 2018;613:231-255. doi: 10.1016/bs.mie.2018.10.007. Epub 2018 Nov 23.

PMID:
30509468
6.

Critical computational analysis illuminates the reductive-elimination mechanism that activates nitrogenase for N2 reduction.

Raugei S, Seefeldt LC, Hoffman BM.

Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):E10521-E10530. doi: 10.1073/pnas.1810211115. Epub 2018 Oct 24.

7.

Control of electron transfer in nitrogenase.

Seefeldt LC, Peters JW, Beratan DN, Bothner B, Minteer SD, Raugei S, Hoffman BM.

Curr Opin Chem Biol. 2018 Dec;47:54-59. doi: 10.1016/j.cbpa.2018.08.011. Epub 2018 Sep 8. Review.

8.

Kinetic Understanding of N2 Reduction versus H2 Evolution at the E4(4H) Janus State in the Three Nitrogenases.

Harris DF, Yang ZY, Dean DR, Seefeldt LC, Hoffman BM.

Biochemistry. 2018 Oct 2;57(39):5706-5714. doi: 10.1021/acs.biochem.8b00784. Epub 2018 Sep 19.

9.

Energy Transduction in Nitrogenase.

Seefeldt LC, Hoffman BM, Peters JW, Raugei S, Beratan DN, Antony E, Dean DR.

Acc Chem Res. 2018 Sep 18;51(9):2179-2186. doi: 10.1021/acs.accounts.8b00112. Epub 2018 Aug 10.

10.

A new era for electron bifurcation.

Peters JW, Beratan DN, Bothner B, Dyer RB, Harwood CS, Heiden ZM, Hille R, Jones AK, King PW, Lu Y, Lubner CE, Minteer SD, Mulder DW, Raugei S, Schut GJ, Seefeldt LC, Tokmina-Lukaszewska M, Zadvornyy OA, Zhang P, Adams MW.

Curr Opin Chem Biol. 2018 Dec;47:32-38. doi: 10.1016/j.cbpa.2018.07.026. Epub 2018 Aug 1. Review.

PMID:
30077080
11.

Beyond fossil fuel-driven nitrogen transformations.

Chen JG, Crooks RM, Seefeldt LC, Bren KL, Bullock RM, Darensbourg MY, Holland PL, Hoffman B, Janik MJ, Jones AK, Kanatzidis MG, King P, Lancaster KM, Lymar SV, Pfromm P, Schneider WF, Schrock RR.

Science. 2018 May 25;360(6391). pii: eaar6611. doi: 10.1126/science.aar6611. Review.

12.

Sequential and differential interaction of assembly factors during nitrogenase MoFe protein maturation.

Jimenez-Vicente E, Yang ZY, Ray WK, Echavarri-Erasun C, Cash VL, Rubio LM, Seefeldt LC, Dean DR.

J Biol Chem. 2018 Jun 22;293(25):9812-9823. doi: 10.1074/jbc.RA118.002994. Epub 2018 May 3.

13.

Structural characterization of the P1+ intermediate state of the P-cluster of nitrogenase.

Keable SM, Zadvornyy OA, Johnson LE, Ginovska B, Rasmussen AJ, Danyal K, Eilers BJ, Prussia GA, LeVan AX, Raugei S, Seefeldt LC, Peters JW.

J Biol Chem. 2018 Jun 22;293(25):9629-9635. doi: 10.1074/jbc.RA118.002435. Epub 2018 May 2.

14.

Exploring the alternatives of biological nitrogen fixation.

Mus F, Alleman AB, Pence N, Seefeldt LC, Peters JW.

Metallomics. 2018 Apr 25;10(4):523-538. doi: 10.1039/c8mt00038g. Review.

PMID:
29629463
15.

Hydride Conformers of the Nitrogenase FeMo-cofactor Two-Electron Reduced State E2(2H), Assigned Using Cryogenic Intra Electron Paramagnetic Resonance Cavity Photolysis.

Lukoyanov DA, Khadka N, Yang ZY, Dean DR, Seefeldt LC, Hoffman BM.

Inorg Chem. 2018 Jun 18;57(12):6847-6852. doi: 10.1021/acs.inorgchem.8b00271. Epub 2018 Mar 24.

16.

Electron Transfer to Nitrogenase in Different Genomic and Metabolic Backgrounds.

Poudel S, Colman DR, Fixen KR, Ledbetter RN, Zheng Y, Pence N, Seefeldt LC, Peters JW, Harwood CS, Boyd ES.

J Bacteriol. 2018 Apr 24;200(10). pii: e00757-17. doi: 10.1128/JB.00757-17. Print 2018 May 15.

17.

A pathway for biological methane production using bacterial iron-only nitrogenase.

Zheng Y, Harris DF, Yu Z, Fu Y, Poudel S, Ledbetter RN, Fixen KR, Yang ZY, Boyd ES, Lidstrom ME, Seefeldt LC, Harwood CS.

Nat Microbiol. 2018 Mar;3(3):281-286. doi: 10.1038/s41564-017-0091-5. Epub 2018 Jan 15.

PMID:
29335552
18.

Cluster-Dependent Charge-Transfer Dynamics in Iron-Sulfur Proteins.

Mao Z, Liou SH, Khadka N, Jenney FE Jr, Goodin DB, Seefeldt LC, Adams MWW, Cramer SP, Larsen DS.

Biochemistry. 2018 Feb 13;57(6):978-990. doi: 10.1021/acs.biochem.7b01159. Epub 2018 Jan 24.

PMID:
29303562
19.

Mechanism of N2 Reduction Catalyzed by Fe-Nitrogenase Involves Reductive Elimination of H2.

Harris DF, Lukoyanov DA, Shaw S, Compton P, Tokmina-Lukaszewska M, Bothner B, Kelleher N, Dean DR, Hoffman BM, Seefeldt LC.

Biochemistry. 2018 Feb 6;57(5):701-710. doi: 10.1021/acs.biochem.7b01142. Epub 2018 Jan 17.

20.

Structural characterization of the nitrogenase molybdenum-iron protein with the substrate acetylene trapped near the active site.

Keable SM, Vertemara J, Zadvornyy OA, Eilers BJ, Danyal K, Rasmussen AJ, De Gioia L, Zampella G, Seefeldt LC, Peters JW.

J Inorg Biochem. 2018 Mar;180:129-134. doi: 10.1016/j.jinorgbio.2017.12.008. Epub 2017 Dec 13.

PMID:
29275221
21.

Electrocatalytic CO2 reduction catalyzed by nitrogenase MoFe and FeFe proteins.

Hu B, Harris DF, Dean DR, Liu TL, Yang ZY, Seefeldt LC.

Bioelectrochemistry. 2018 Apr;120:104-109. doi: 10.1016/j.bioelechem.2017.12.002. Epub 2017 Dec 5.

PMID:
29223886
22.

Mechanism of Nitrogenase H2 Formation by Metal-Hydride Protonation Probed by Mediated Electrocatalysis and H/D Isotope Effects.

Khadka N, Milton RD, Shaw S, Lukoyanov D, Dean DR, Minteer SD, Raugei S, Hoffman BM, Seefeldt LC.

J Am Chem Soc. 2017 Sep 27;139(38):13518-13524. doi: 10.1021/jacs.7b07311. Epub 2017 Sep 15.

23.

Defining Electron Bifurcation in the Electron-Transferring Flavoprotein Family.

Garcia Costas AM, Poudel S, Miller AF, Schut GJ, Ledbetter RN, Fixen KR, Seefeldt LC, Adams MWW, Harwood CS, Boyd ES, Peters JW.

J Bacteriol. 2017 Oct 3;199(21). pii: e00440-17. doi: 10.1128/JB.00440-17. Print 2017 Nov 1.

24.

Unraveling the interactions of the physiological reductant flavodoxin with the different conformations of the Fe protein in the nitrogenase cycle.

Pence N, Tokmina-Lukaszewska M, Yang ZY, Ledbetter RN, Seefeldt LC, Bothner B, Peters JW.

J Biol Chem. 2017 Sep 22;292(38):15661-15669. doi: 10.1074/jbc.M117.801548. Epub 2017 Aug 7.

25.

The Electron Bifurcating FixABCX Protein Complex from Azotobacter vinelandii: Generation of Low-Potential Reducing Equivalents for Nitrogenase Catalysis.

Ledbetter RN, Garcia Costas AM, Lubner CE, Mulder DW, Tokmina-Lukaszewska M, Artz JH, Patterson A, Magnuson TS, Jay ZJ, Duan HD, Miller J, Plunkett MH, Hoben JP, Barney BM, Carlson RP, Miller AF, Bothner B, King PW, Peters JW, Seefeldt LC.

Biochemistry. 2017 Aug 15;56(32):4177-4190. doi: 10.1021/acs.biochem.7b00389. Epub 2017 Aug 3.

PMID:
28704608
26.

Infrared spectroscopy of the nitrogenase MoFe protein under electrochemical control: potential-triggered CO binding.

Paengnakorn P, Ash PA, Shaw S, Danyal K, Chen T, Dean DR, Seefeldt LC, Vincent KA.

Chem Sci. 2017 Feb 1;8(2):1500-1505. doi: 10.1039/c6sc02860h. Epub 2016 Oct 27.

27.

Photoinduced Reductive Elimination of H2 from the Nitrogenase Dihydride (Janus) State Involves a FeMo-cofactor-H2 Intermediate.

Lukoyanov D, Khadka N, Dean DR, Raugei S, Seefeldt LC, Hoffman BM.

Inorg Chem. 2017 Feb 20;56(4):2233-2240. doi: 10.1021/acs.inorgchem.6b02899. Epub 2017 Feb 8.

28.

Exploring Electron/Proton Transfer and Conformational Changes in the Nitrogenase MoFe Protein and FeMo-cofactor Through Cryoreduction/EPR Measurements.

Davydov R, Khadka N, Yang ZY, Fielding AJ, Lukoyanov D, Dean DR, Seefeldt LC, Hoffman BM.

Isr J Chem. 2016 Oct;56(9-10):841-851. Epub 2016 Jul 29.

29.

Negative cooperativity in the nitrogenase Fe protein electron delivery cycle.

Danyal K, Shaw S, Page TR, Duval S, Horitani M, Marts AR, Lukoyanov D, Dean DR, Raugei S, Hoffman BM, Seefeldt LC, Antony E.

Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):E5783-E5791.

30.

Light-driven carbon dioxide reduction to methane by nitrogenase in a photosynthetic bacterium.

Fixen KR, Zheng Y, Harris DF, Shaw S, Yang ZY, Dean DR, Seefeldt LC, Harwood CS.

Proc Natl Acad Sci U S A. 2016 Sep 6;113(36):10163-7. doi: 10.1073/pnas.1611043113. Epub 2016 Aug 22.

31.

Reductive Elimination of H2 Activates Nitrogenase to Reduce the N≡N Triple Bond: Characterization of the E4(4H) Janus Intermediate in Wild-Type Enzyme.

Lukoyanov D, Khadka N, Yang ZY, Dean DR, Seefeldt LC, Hoffman BM.

J Am Chem Soc. 2016 Aug 24;138(33):10674-83. doi: 10.1021/jacs.6b06362. Epub 2016 Aug 16.

32.

CO2 Reduction Catalyzed by Nitrogenase: Pathways to Formate, Carbon Monoxide, and Methane.

Khadka N, Dean DR, Smith D, Hoffman BM, Raugei S, Seefeldt LC.

Inorg Chem. 2016 Sep 6;55(17):8321-30. doi: 10.1021/acs.inorgchem.6b00388. Epub 2016 Aug 8.

33.

Evidence That the Pi Release Event Is the Rate-Limiting Step in the Nitrogenase Catalytic Cycle.

Yang ZY, Ledbetter R, Shaw S, Pence N, Tokmina-Lukaszewska M, Eilers B, Guo Q, Pokhrel N, Cash VL, Dean DR, Antony E, Bothner B, Peters JW, Seefeldt LC.

Biochemistry. 2016 Jul 5;55(26):3625-35. doi: 10.1021/acs.biochem.6b00421. Epub 2016 Jun 22.

PMID:
27295169
34.

Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid.

Brown KA, Harris DF, Wilker MB, Rasmussen A, Khadka N, Hamby H, Keable S, Dukovic G, Peters JW, Seefeldt LC, King PW.

Science. 2016 Apr 22;352(6284):448-50. doi: 10.1126/science.aaf2091.

35.

Reversible Photoinduced Reductive Elimination of H2 from the Nitrogenase Dihydride State, the E(4)(4H) Janus Intermediate.

Lukoyanov D, Khadka N, Yang ZY, Dean DR, Seefeldt LC, Hoffman BM.

J Am Chem Soc. 2016 Feb 3;138(4):1320-7. doi: 10.1021/jacs.5b11650. Epub 2016 Jan 20.

36.

Oleaginous yeast platform for producing biofuels via co-solvent hydrothermal liquefaction.

Jena U, McCurdy AT, Warren A, Summers H, Ledbetter RN, Hoekman SK, Seefeldt LC, Quinn JC.

Biotechnol Biofuels. 2015 Oct 13;8:167. doi: 10.1186/s13068-015-0345-5. eCollection 2015.

37.

Techno-economic feasibility and life cycle assessment of dairy effluent to renewable diesel via hydrothermal liquefaction.

Summers HM, Ledbetter RN, McCurdy AT, Morgan MR, Seefeldt LC, Jena U, Hoekman SK, Quinn JC.

Bioresour Technol. 2015 Nov;196:431-40. doi: 10.1016/j.biortech.2015.07.077. Epub 2015 Aug 3.

PMID:
26276094
38.

Fe protein-independent substrate reduction by nitrogenase MoFe protein variants.

Danyal K, Rasmussen AJ, Keable SM, Inglet BS, Shaw S, Zadvornyy OA, Duval S, Dean DR, Raugei S, Peters JW, Seefeldt LC.

Biochemistry. 2015 Apr 21;54(15):2456-62. doi: 10.1021/acs.biochem.5b00140. Epub 2015 Apr 7.

PMID:
25831270
39.

Identification of a key catalytic intermediate demonstrates that nitrogenase is activated by the reversible exchange of N₂ for H₂.

Lukoyanov D, Yang ZY, Khadka N, Dean DR, Seefeldt LC, Hoffman BM.

J Am Chem Soc. 2015 Mar 18;137(10):3610-5. doi: 10.1021/jacs.5b00103. Epub 2015 Mar 5.

40.

Nitrite and hydroxylamine as nitrogenase substrates: mechanistic implications for the pathway of N₂ reduction.

Shaw S, Lukoyanov D, Danyal K, Dean DR, Hoffman BM, Seefeldt LC.

J Am Chem Soc. 2014 Sep 10;136(36):12776-83. doi: 10.1021/ja507123d. Epub 2014 Aug 28.

41.

Improving energetics of triacylglyceride extraction from wet oleaginous microbes.

Willis RM, McCurdy AT, Ogborn MK, Wahlen BD, Quinn JC, Pease LF 3rd, Seefeldt LC.

Bioresour Technol. 2014 Sep;167:416-24. doi: 10.1016/j.biortech.2014.06.013. Epub 2014 Jun 14.

PMID:
25000397
42.

Substrate channel in nitrogenase revealed by a molecular dynamics approach.

Smith D, Danyal K, Raugei S, Seefeldt LC.

Biochemistry. 2014 Apr 15;53(14):2278-85. doi: 10.1021/bi401313j. Epub 2014 Apr 2.

PMID:
24654842
43.

A confirmation of the quench-cryoannealing relaxation protocol for identifying reduction states of freeze-trapped nitrogenase intermediates.

Lukoyanov D, Yang ZY, Duval S, Danyal K, Dean DR, Seefeldt LC, Hoffman BM.

Inorg Chem. 2014 Apr 7;53(7):3688-93. doi: 10.1021/ic500013c. Epub 2014 Mar 18.

44.

Mechanism of nitrogen fixation by nitrogenase: the next stage.

Hoffman BM, Lukoyanov D, Yang ZY, Dean DR, Seefeldt LC.

Chem Rev. 2014 Apr 23;114(8):4041-62. doi: 10.1021/cr400641x. Epub 2014 Jan 27. Review. No abstract available.

45.

Electron transfer precedes ATP hydrolysis during nitrogenase catalysis.

Duval S, Danyal K, Shaw S, Lytle AK, Dean DR, Hoffman BM, Antony E, Seefeldt LC.

Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16414-9. doi: 10.1073/pnas.1311218110. Epub 2013 Sep 23.

46.

On reversible H2 loss upon N2 binding to FeMo-cofactor of nitrogenase.

Yang ZY, Khadka N, Lukoyanov D, Hoffman BM, Dean DR, Seefeldt LC.

Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16327-32. doi: 10.1073/pnas.1315852110. Epub 2013 Sep 23.

47.

Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation.

Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJ, Kerfeld CA, Morris RH, Peden CH, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JN, Seefeldt LC, Thauer RK, Waldrop GL.

Chem Rev. 2013 Aug 14;113(8):6621-58. doi: 10.1021/cr300463y. Epub 2013 Jun 14. Review. No abstract available.

48.

Nitrogenase reduction of carbon-containing compounds.

Seefeldt LC, Yang ZY, Duval S, Dean DR.

Biochim Biophys Acta. 2013 Aug-Sep;1827(8-9):1102-11. doi: 10.1016/j.bbabio.2013.04.003. Epub 2013 Apr 16. Review.

49.

Nitrogenase: a draft mechanism.

Hoffman BM, Lukoyanov D, Dean DR, Seefeldt LC.

Acc Chem Res. 2013 Feb 19;46(2):587-95. doi: 10.1021/ar300267m. Epub 2013 Jan 4.

50.

Carbon dioxide reduction to methane and coupling with acetylene to form propylene catalyzed by remodeled nitrogenase.

Yang ZY, Moure VR, Dean DR, Seefeldt LC.

Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19644-8. doi: 10.1073/pnas.1213159109. Epub 2012 Nov 12.

Supplemental Content

Loading ...
Support Center