Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 29

1.

Altered microglia and neurovasculature in the Alzheimer's disease cerebellum.

Singh-Bains MK, Linke V, Austria MDR, Tan AYS, Scotter EL, Mehrabi NF, Faull RLM, Dragunow M.

Neurobiol Dis. 2019 Dec;132:104589. doi: 10.1016/j.nbd.2019.104589. Epub 2019 Aug 24.

PMID:
31454549
2.

Antisense oligonucleotide therapies for Amyotrophic Lateral Sclerosis: Existing and emerging targets.

Klim JR, Vance C, Scotter EL.

Int J Biochem Cell Biol. 2019 May;110:149-153. doi: 10.1016/j.biocel.2019.03.009. Epub 2019 Mar 20.

PMID:
30904737
3.

Establishment and 12-month progress of the New Zealand Motor Neurone Disease Registry.

Walker KL, Rodrigues MJ, Watson B, Reilly C, Scotter EL, Brunton H, Turnbull J, Roxburgh RH.

J Clin Neurosci. 2019 Feb;60:7-11. doi: 10.1016/j.jocn.2018.11.034. Epub 2018 Nov 22. Review.

PMID:
30473407
4.

PU.1 regulates Alzheimer's disease-associated genes in primary human microglia.

Rustenhoven J, Smith AM, Smyth LC, Jansson D, Scotter EL, Swanson MEV, Aalderink M, Coppieters N, Narayan P, Handley R, Overall C, Park TIH, Schweder P, Heppner P, Curtis MA, Faull RLM, Dragunow M.

Mol Neurodegener. 2018 Aug 20;13(1):44. doi: 10.1186/s13024-018-0277-1.

5.

Markers for human brain pericytes and smooth muscle cells.

Smyth LCD, Rustenhoven J, Scotter EL, Schweder P, Faull RLM, Park TIH, Dragunow M.

J Chem Neuroanat. 2018 Oct;92:48-60. doi: 10.1016/j.jchemneu.2018.06.001. Epub 2018 Jun 7.

PMID:
29885791
6.

Modelling physiological and pathological conditions to study pericyte biology in brain function and dysfunction.

Rustenhoven J, Smyth LC, Jansson D, Schweder P, Aalderink M, Scotter EL, Mee EW, Faull RLM, Park TI, Dragunow M.

BMC Neurosci. 2018 Feb 22;19(1):6. doi: 10.1186/s12868-018-0405-4.

7.

Motor neuron disease mortality rates in New Zealand 1992-2013.

Cao MC, Chancellor A, Charleston A, Dragunow M, Scotter EL.

Amyotroph Lateral Scler Frontotemporal Degener. 2018 May;19(3-4):285-293. doi: 10.1080/21678421.2018.1432660. Epub 2018 Jan 30.

PMID:
29382218
8.

Mutations in the vesicular trafficking protein annexin A11 are associated with amyotrophic lateral sclerosis.

Smith BN, Topp SD, Fallini C, Shibata H, Chen HJ, Troakes C, King A, Ticozzi N, Kenna KP, Soragia-Gkazi A, Miller JW, Sato A, Dias DM, Jeon M, Vance C, Wong CH, de Majo M, Kattuah W, Mitchell JC, Scotter EL, Parkin NW, Sapp PC, Nolan M, Nestor PJ, Simpson M, Weale M, Lek M, Baas F, Vianney de Jong JM, Ten Asbroek ALMA, Redondo AG, Esteban-Pérez J, Tiloca C, Verde F, Duga S, Leigh N, Pall H, Morrison KE, Al-Chalabi A, Shaw PJ, Kirby J, Turner MR, Talbot K, Hardiman O, Glass JD, De Belleroche J, Maki M, Moss SE, Miller C, Gellera C, Ratti A, Al-Sarraj S, Brown RH Jr, Silani V, Landers JE, Shaw CE.

Sci Transl Med. 2017 May 3;9(388). pii: eaad9157. doi: 10.1126/scitranslmed.aad9157.

9.

Interferon-γ blocks signalling through PDGFRβ in human brain pericytes.

Jansson D, Scotter EL, Rustenhoven J, Coppieters N, Smyth LC, Oldfield RL, Bergin PS, Mee EW, Graham ES, Faull RL, Dragunow M.

J Neuroinflammation. 2016 Sep 21;13(1):249.

10.

C9ORF72 and UBQLN2 mutations are causes of amyotrophic lateral sclerosis in New Zealand: a genetic and pathologic study using banked human brain tissue.

Scotter EL, Smyth L, Bailey JAWT, Wong CH, de Majo M, Vance CA, Synek BJ, Turner C, Pereira J, Charleston A, Waldvogel HJ, Curtis MA, Dragunow M, Shaw CE, Smith BN, Faull RLM.

Neurobiol Aging. 2017 Jan;49:214.e1-214.e5. doi: 10.1016/j.neurobiolaging.2016.06.019. Epub 2016 Jul 5.

PMID:
27480424
11.

The heat shock response plays an important role in TDP-43 clearance: evidence for dysfunction in amyotrophic lateral sclerosis.

Chen HJ, Mitchell JC, Novoselov S, Miller J, Nishimura AL, Scotter EL, Vance CA, Cheetham ME, Shaw CE.

Brain. 2016 May;139(Pt 5):1417-32. doi: 10.1093/brain/aww028. Epub 2016 Mar 1.

12.

TGF-beta1 regulates human brain pericyte inflammatory processes involved in neurovasculature function.

Rustenhoven J, Aalderink M, Scotter EL, Oldfield RL, Bergin PS, Mee EW, Graham ES, Faull RL, Curtis MA, Park TI, Dragunow M.

J Neuroinflammation. 2016 Feb 11;13:37. doi: 10.1186/s12974-016-0503-0.

13.

An anti-inflammatory role for C/EBPδ in human brain pericytes.

Rustenhoven J, Scotter EL, Jansson D, Kho DT, Oldfield RL, Bergin PS, Mee EW, Faull RL, Curtis MA, Graham SE, Park TI, Dragunow M.

Sci Rep. 2015 Jul 13;5:12132. doi: 10.1038/srep12132.

14.

Erratum to: TDP-43 Proteinopathy and ALS: Insights into Disease Mechanisms and Therapeutic Targets.

Scotter EL, Chen HJ, Shaw CE.

Neurotherapeutics. 2015 Apr;12(2):515-8. doi: 10.1007/s13311-015-0351-0. No abstract available.

15.

Motor neurone disease: bringing New Zealand patients onto the world stage.

Scotter EL.

N Z Med J. 2015 Feb 20;128(1409):12-4. No abstract available.

PMID:
25721957
16.

TDP-43 Proteinopathy and ALS: Insights into Disease Mechanisms and Therapeutic Targets.

Scotter EL, Chen HJ, Shaw CE.

Neurotherapeutics. 2015 Apr;12(2):352-63. doi: 10.1007/s13311-015-0338-x. Review. Erratum in: Neurotherapeutics. 2015 Apr;12(2):515-8.

17.

Novel mutations support a role for Profilin 1 in the pathogenesis of ALS.

Smith BN, Vance C, Scotter EL, Troakes C, Wong CH, Topp S, Maekawa S, King A, Mitchell JC, Lund K, Al-Chalabi A, Ticozzi N, Silani V, Sapp P, Brown RH Jr, Landers JE, Al-Sarraj S, Shaw CE.

Neurobiol Aging. 2015 Mar;36(3):1602.e17-27. doi: 10.1016/j.neurobiolaging.2014.10.032. Epub 2014 Oct 31.

18.

Exome-wide rare variant analysis identifies TUBA4A mutations associated with familial ALS.

Smith BN, Ticozzi N, Fallini C, Gkazi AS, Topp S, Kenna KP, Scotter EL, Kost J, Keagle P, Miller JW, Calini D, Vance C, Danielson EW, Troakes C, Tiloca C, Al-Sarraj S, Lewis EA, King A, Colombrita C, Pensato V, Castellotti B, de Belleroche J, Baas F, ten Asbroek AL, Sapp PC, McKenna-Yasek D, McLaughlin RL, Polak M, Asress S, Esteban-Pérez J, Muñoz-Blanco JL, Simpson M; SLAGEN Consortium, van Rheenen W, Diekstra FP, Lauria G, Duga S, Corti S, Cereda C, Corrado L, Sorarù G, Morrison KE, Williams KL, Nicholson GA, Blair IP, Dion PA, Leblond CS, Rouleau GA, Hardiman O, Veldink JH, van den Berg LH, Al-Chalabi A, Pall H, Shaw PJ, Turner MR, Talbot K, Taroni F, García-Redondo A, Wu Z, Glass JD, Gellera C, Ratti A, Brown RH Jr, Silani V, Shaw CE, Landers JE.

Neuron. 2014 Oct 22;84(2):324-31. doi: 10.1016/j.neuron.2014.09.027. Epub 2014 Oct 22.

19.

Allele-specific knockdown of ALS-associated mutant TDP-43 in neural stem cells derived from induced pluripotent stem cells.

Nishimura AL, Shum C, Scotter EL, Abdelgany A, Sardone V, Wright J, Lee YB, Chen HJ, Bilican B, Carrasco M, Maniatis T, Chandran S, Rogelj B, Gallo JM, Shaw CE.

PLoS One. 2014 Mar 20;9(3):e91269. doi: 10.1371/journal.pone.0091269. eCollection 2014.

20.

Differential roles of the ubiquitin proteasome system and autophagy in the clearance of soluble and aggregated TDP-43 species.

Scotter EL, Vance C, Nishimura AL, Lee YB, Chen HJ, Urwin H, Sardone V, Mitchell JC, Rogelj B, Rubinsztein DC, Shaw CE.

J Cell Sci. 2014 Mar 15;127(Pt 6):1263-78. doi: 10.1242/jcs.140087. Epub 2014 Jan 14.

21.

Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic.

Lee YB, Chen HJ, Peres JN, Gomez-Deza J, Attig J, Stalekar M, Troakes C, Nishimura AL, Scotter EL, Vance C, Adachi Y, Sardone V, Miller JW, Smith BN, Gallo JM, Ule J, Hirth F, Rogelj B, Houart C, Shaw CE.

Cell Rep. 2013 Dec 12;5(5):1178-86. doi: 10.1016/j.celrep.2013.10.049. Epub 2013 Nov 27.

22.

ALS mutant FUS disrupts nuclear localization and sequesters wild-type FUS within cytoplasmic stress granules.

Vance C, Scotter EL, Nishimura AL, Troakes C, Mitchell JC, Kathe C, Urwin H, Manser C, Miller CC, Hortobágyi T, Dragunow M, Rogelj B, Shaw CE.

Hum Mol Genet. 2013 Jul 1;22(13):2676-88. doi: 10.1093/hmg/ddt117. Epub 2013 Mar 7.

23.

Neuromuscular disease: new insights and avenues for therapy.

Scotter EL, Shaw CE.

Lancet Neurol. 2013 Jan;12(1):13-5. doi: 10.1016/S1474-4422(12)70298-3. Review. No abstract available.

PMID:
23237893
24.

The therapeutic potential of G-protein coupled receptors in Huntington's disease.

Dowie MJ, Scotter EL, Molinari E, Glass M.

Pharmacol Ther. 2010 Nov;128(2):305-23. doi: 10.1016/j.pharmthera.2010.07.008. Epub 2010 Aug 11. Review.

PMID:
20708032
25.

Neuroprotective potential of CB1 receptor agonists in an in vitro model of Huntington's disease.

Scotter EL, Goodfellow CE, Graham ES, Dragunow M, Glass M.

Br J Pharmacol. 2010 Jun;160(3):747-61. doi: 10.1111/j.1476-5381.2010.00773.x.

26.

The endocannabinoid system as a target for the treatment of neurodegenerative disease.

Scotter EL, Abood ME, Glass M.

Br J Pharmacol. 2010 Jun;160(3):480-98. doi: 10.1111/j.1476-5381.2010.00735.x. Review.

27.

Specific detection of CB1 receptors; cannabinoid CB1 receptor antibodies are not all created equal!

Grimsey NL, Goodfellow CE, Scotter EL, Dowie MJ, Glass M, Graham ES.

J Neurosci Methods. 2008 Jun 15;171(1):78-86. doi: 10.1016/j.jneumeth.2008.02.014. Epub 2008 Mar 2.

PMID:
18406468
28.

High throughput quantification of mutant huntingtin aggregates.

Scotter EL, Narayan P, Glass M, Dragunow M.

J Neurosci Methods. 2008 Jun 15;171(1):174-9. doi: 10.1016/j.jneumeth.2008.02.007. Epub 2008 Feb 19.

PMID:
18367250
29.

Supplemental Content

Loading ...
Support Center