Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 34

1.

The impact of wine components on fractionation of Cu and Fe in model wine systems: Macromolecules, phenolic and sulfur compounds.

Kontoudakis N, Smith M, Guo A, Smith PA, Scollary GR, Wilkes EN, Clark AC.

Food Res Int. 2017 Aug;98:95-102. doi: 10.1016/j.foodres.2016.11.017. Epub 2016 Nov 19.

PMID:
28610737
2.

Vascular development of the grapevine (Vitis vinifera L.) inflorescence rachis in response to flower number, plant growth regulators and defoliation.

Gourieroux AM, Holzapfel BP, McCully ME, Scollary GR, Rogiers SY.

J Plant Res. 2017 Sep;130(5):873-883. doi: 10.1007/s10265-017-0944-2. Epub 2017 Apr 18.

PMID:
28421372
3.

The impact of aging wine in high and low oxygen conditions on the fractionation of Cu and Fe in Chardonnay wine.

Kontoudakis N, Guo A, Scollary GR, Clark AC.

Food Chem. 2017 Aug 15;229:319-328. doi: 10.1016/j.foodchem.2017.02.065. Epub 2017 Feb 15.

PMID:
28372180
4.

Production and Isomeric Distribution of Xanthylium Cation Pigments and Their Precursors in Wine-like Conditions: Impact of Cu(II), Fe(II), Fe(III), Mn(II), Zn(II), and Al(III).

Guo A, Kontoudakis N, Scollary GR, Clark AC.

J Agric Food Chem. 2017 Mar 22;65(11):2414-2425. doi: 10.1021/acs.jafc.6b05554. Epub 2017 Mar 9.

PMID:
28231705
5.

Flowers regulate the growth and vascular development of the inflorescence rachis in Vitis vinifera L.

Gourieroux AM, McCully ME, Holzapfel BP, Scollary GR, Rogiers SY.

Plant Physiol Biochem. 2016 Nov;108:519-529. doi: 10.1016/j.plaphy.2016.08.016. Epub 2016 Aug 28.

PMID:
27596018
6.

Measurement of labile copper in wine by medium exchange stripping potentiometry utilising screen printed carbon electrodes.

Clark AC, Kontoudakis N, Barril C, Schmidtke LM, Scollary GR.

Talanta. 2016 Jul 1;154:431-7. doi: 10.1016/j.talanta.2016.03.099. Epub 2016 Mar 31.

PMID:
27154696
7.

The amino acid distribution in rachis xylem sap and phloem exudate of Vitis vinifera 'Cabernet Sauvignon' bunches.

Gourieroux AM, Holzapfel BP, Scollary GR, McCully ME, Canny MJ, Rogiers SY.

Plant Physiol Biochem. 2016 Aug;105:45-54. doi: 10.1016/j.plaphy.2016.04.010. Epub 2016 Apr 7.

PMID:
27082989
8.

Impact of wine production on the fractionation of copper and iron in Chardonnay wine: Implications for oxygen consumption.

Rousseva M, Kontoudakis N, Schmidtke LM, Scollary GR, Clark AC.

Food Chem. 2016 Jul 15;203:440-447. doi: 10.1016/j.foodchem.2016.02.081. Epub 2016 Feb 12.

PMID:
26948636
9.

Light-induced changes in bottled white wine and underlying photochemical mechanisms.

Grant-Preece P, Barril C, Schmidtke LM, Scollary GR, Clark AC.

Crit Rev Food Sci Nutr. 2017 Mar 4;57(4):743-754. Review.

PMID:
25879850
10.

The decay of ascorbic acid in a model wine system at low oxygen concentration.

Wallington N, Clark AC, Prenzler PD, Barril C, Scollary GR.

Food Chem. 2013 Dec 1;141(3):3139-46. doi: 10.1016/j.foodchem.2013.05.024. Epub 2013 May 31.

PMID:
23871070
11.

Wine bottle colour and oxidative spoilage: whole bottle light exposure experiments under controlled and uncontrolled temperature conditions.

Dias DA, Clark AC, Smith TA, Ghiggino KP, Scollary GR.

Food Chem. 2013 Jun 15;138(4):2451-9. doi: 10.1016/j.foodchem.2012.12.024. Epub 2012 Dec 28.

PMID:
23497908
12.

A novel glutathione-hydroxycinnamic acid product generated in oxidative wine conditions.

Bouzanquet Q, Barril C, Clark AC, Dias DA, Scollary GR.

J Agric Food Chem. 2012 Dec 12;60(49):12186-95. doi: 10.1021/jf3034072. Epub 2012 Nov 29.

PMID:
23163604
13.

The role of light, temperature and wine bottle colour on pigment enhancement in white wine.

Dias DA, Smith TA, Ghiggino KP, Scollary GR.

Food Chem. 2012 Dec 15;135(4):2934-41. doi: 10.1016/j.foodchem.2012.07.068. Epub 2012 Jul 20.

PMID:
22980893
14.

Chemistry of ascorbic acid and sulfur dioxide as an antioxidant system relevant to white wine.

Barril C, Clark AC, Scollary GR.

Anal Chim Acta. 2012 Jun 30;732:186-93. doi: 10.1016/j.aca.2011.11.011. Epub 2011 Nov 15.

PMID:
22688051
15.

Ascorbic acid: a review of its chemistry and reactivity in relation to a wine environment.

Bradshaw MP, Barril C, Clark AC, Prenzler PD, Scollary GR.

Crit Rev Food Sci Nutr. 2011 Jul;51(6):479-98. doi: 10.1080/10408391003690559. Review.

PMID:
21929328
16.

Impact of glutathione on the formation of methylmethine- and carboxymethine-bridged (+)-catechin dimers in a model wine system.

Sonni F, Moore EG, Clark AC, Chinnici F, Riponi C, Scollary GR.

J Agric Food Chem. 2011 Jul 13;59(13):7410-8. doi: 10.1021/jf200968x. Epub 2011 Jun 8.

PMID:
21591782
17.

Antioxidant action of glutathione and the ascorbic acid/glutathione pair in a model white wine.

Sonni F, Clark AC, Prenzler PD, Riponi C, Scollary GR.

J Agric Food Chem. 2011 Apr 27;59(8):3940-9. doi: 10.1021/jf104575w. Epub 2011 Mar 8.

PMID:
21384873
18.

Iron(III) tartrate as a potential precursor of light-induced oxidative degradation of white wine: studies in a model wine system.

Clark AC, Dias DA, Smith TA, Ghiggino KP, Scollary GR.

J Agric Food Chem. 2011 Apr 27;59(8):3575-81. doi: 10.1021/jf104897z. Epub 2011 Mar 25.

PMID:
21381783
19.

Micro-oxygenation of red wine: techniques, applications, and outcomes.

Schmidtke LM, Clark AC, Scollary GR.

Crit Rev Food Sci Nutr. 2011 Feb;51(2):115-31. doi: 10.1080/10408390903434548. Review.

PMID:
21328108
20.

Formation of pigment precursor (+)-1''-methylene-6''-hydroxy-2H-furan-5''-one-catechin isomers from (+)-catechin and a degradation product of ascorbic acid in a model wine system.

Barril C, Clark AC, Prenzler PD, Karuso P, Scollary GR.

J Agric Food Chem. 2009 Oct 28;57(20):9539-46. doi: 10.1021/jf902198e.

PMID:
20560623
21.

Sensory, chemical, and electronic tongue assessment of micro-oxygenated wines and oak chip maceration: assessing the commonality of analytical techniques.

Schmidtke LM, Rudnitskaya A, Saliba AJ, Blackman JW, Scollary GR, Clark AC, Rutledge DN, Delgadillo I, Legin A.

J Agric Food Chem. 2010 Apr 28;58(8):5026-33. doi: 10.1021/jf904104f.

PMID:
20356080
22.

A robust method for quantification of volatile compounds within and between vintages using headspace-solid-phase micro-extraction coupled with GC-MS--application on Semillon wines.

Rebière L, Clark AC, Schmidtke LM, Prenzler PD, Scollary GR.

Anal Chim Acta. 2010 Feb 15;660(1-2):149-57. doi: 10.1016/j.aca.2009.10.029. Epub 2009 Oct 24.

PMID:
20103156
23.

Determination of the impact of bottle colour and phenolic concentration on pigment development in white wine stored under external conditions.

Maury C, Clark AC, Scollary GR.

Anal Chim Acta. 2010 Feb 15;660(1-2):81-6. doi: 10.1016/j.aca.2009.11.048. Epub 2009 Dec 3.

PMID:
20103147
24.

Examination of the potential for using chemical analysis as a surrogate for sensory analysis.

Blackman J, Rutledge DN, Tesic D, Saliba A, Scollary GR.

Anal Chim Acta. 2010 Feb 15;660(1-2):2-7. doi: 10.1016/j.aca.2009.10.062. Epub 2009 Nov 4.

PMID:
20103137
25.

The influence of stereochemistry of antioxidants and flavonols on oxidation processes in a model wine system: ascorbic acid, erythorbic acid, +-catechin and (-)-epicatechin.

Clark AC, Vestner J, Barril C, Maury C, Prenzler PD, Scollary GR.

J Agric Food Chem. 2010 Jan 27;58(2):1004-11. doi: 10.1021/jf903233x.

PMID:
20039675
26.

Size fractionation of metals in wine using ultrafiltration.

McKinnon AJ, Scollary GR.

Talanta. 1997 Sep;44(9):1649-58.

PMID:
18966904
27.

Understanding the contribution of ascorbic acid to the pigment development in model white wine systems using liquid chromatography with diode array and mass spectrometry detection techniques.

Barril C, Clark AC, Scollary GR.

Anal Chim Acta. 2008 Jul 21;621(1):44-51. doi: 10.1016/j.aca.2007.10.045. Epub 2007 Nov 4.

PMID:
18573369
28.

Isomeric influence on the oxidative coloration of phenolic compounds in a model white wine: comparison of (+)-catechin and (-)-epicatechin.

Labrouche F, Clark AC, Prenzler PD, Scollary GR.

J Agric Food Chem. 2005 Dec 28;53(26):9993-8.

PMID:
16366685
29.

The role of copper(II) in the bridging reactions of (+)-catechin by glyoxylic acid in a model white wine.

Clark AC, Prenzler PD, Scollary GR.

J Agric Food Chem. 2003 Oct 8;51(21):6204-10.

PMID:
14518945
30.

Defining the ascorbic acid crossover from anti-oxidant to pro-oxidant in a model wine matrix containing (+)-catechin.

Bradshaw MP, Cheynier V, Scollary GR, Prenzler PD.

J Agric Food Chem. 2003 Jul 2;51(14):4126-32.

PMID:
12822957
31.

Ascorbic acid-induced browning of (+)-catechin in a model wine system.

Bradshaw MP, Prenzler PD, Scollary GR.

J Agric Food Chem. 2001 Feb;49(2):934-9.

PMID:
11262052
32.

Determination of sulfur dioxide in wines and beverages by flow injection analysis with reductive amperometric detection and electrolytic cleanup.

Cardwell TJ, Cattrall RW, Chen GN, Scollary GR, Hamilton IA.

J AOAC Int. 1993 Nov-Dec;76(6):1389-93.

PMID:
8286980
33.

The interaction of phosphine with haemoglobin and erythrocytes.

Chin KL, Mai X, Meaklim J, Scollary GR, Leaver DD.

Xenobiotica. 1992 May;22(5):599-607.

PMID:
1413875
34.

Determination of calcium in waters, milk and wine by discontinuous-flow analysis.

Cardwell TJ, Cattrall RW, Cross GJ, Mrzljak RI, Scollary GR.

Analyst. 1990 Sep;115(9):1235-7.

PMID:
2128675

Supplemental Content

Loading ...
Support Center