Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 149

1.

Recurrently Breaking Genes in Neural Progenitors: Potential Roles of DNA Breaks in Neuronal Function, Degeneration and Cancer.

Alt FW, Wei PC, Schwer B.

In: Jaenisch R, Zhang F, Gage F, editors. Genome Editing in Neurosciences [Internet]. Cham (CH): Springer; 2017.
2017 Sep 15.

2.

Inositol pyrophosphates impact phosphate homeostasis via modulation of RNA 3' processing and transcription termination.

Sanchez AM, Garg A, Shuman S, Schwer B.

Nucleic Acids Res. 2019 Sep 19;47(16):8452-8469. doi: 10.1093/nar/gkz567.

PMID:
31276588
3.

Structure of Fission Yeast Transcription Factor Pho7 Bound to pho1 Promoter DNA and Effect of Pho7 Mutations on DNA Binding and Phosphate Homeostasis.

Garg A, Goldgur Y, Sanchez AM, Schwer B, Shuman S.

Mol Cell Biol. 2019 Jun 13;39(13). pii: e00132-19. doi: 10.1128/MCB.00132-19. Print 2019 Jul 1.

PMID:
31010807
4.

Domain Requirements and Genetic Interactions of the Mud1 Subunit of the Saccharomyces cerevisiae U1 snRNP.

Agarwal R, Schwer B, Shuman S.

G3 (Bethesda). 2019 Jan 9;9(1):145-151. doi: 10.1534/g3.118.200781.

5.

RNA polymerase II CTD interactome with 3' processing and termination factors in fission yeast and its impact on phosphate homeostasis.

Sanchez AM, Shuman S, Schwer B.

Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):E10652-E10661. doi: 10.1073/pnas.1810711115. Epub 2018 Oct 24.

6.

Neural blastocyst complementation enables mouse forebrain organogenesis.

Chang AN, Liang Z, Dai HQ, Chapdelaine-Williams AM, Andrews N, Bronson RT, Schwer B, Alt FW.

Nature. 2018 Nov;563(7729):126-130. doi: 10.1038/s41586-018-0586-0. Epub 2018 Oct 10.

7.

Distinctive structural basis for DNA recognition by the fission yeast Zn2Cys6 transcription factor Pho7 and its role in phosphate homeostasis.

Garg A, Goldgur Y, Schwer B, Shuman S.

Nucleic Acids Res. 2018 Nov 30;46(21):11262-11273. doi: 10.1093/nar/gky827.

8.

DNA double-strand breaks as drivers of neural genomic change, function, and disease.

Alt FW, Schwer B.

DNA Repair (Amst). 2018 Nov;71:158-163. doi: 10.1016/j.dnarep.2018.08.019. Epub 2018 Aug 23. Review.

PMID:
30195640
10.

Three classes of recurrent DNA break clusters in brain progenitors identified by 3D proximity-based break joining assay.

Wei PC, Lee CS, Du Z, Schwer B, Zhang Y, Kao J, Zurita J, Alt FW.

Proc Natl Acad Sci U S A. 2018 Feb 20;115(8):1919-1924. doi: 10.1073/pnas.1719907115. Epub 2018 Feb 5.

11.

A long noncoding (lnc)RNA governs expression of the phosphate transporter Pho84 in fission yeast and has cascading effects on the flanking prt lncRNA and pho1 genes.

Garg A, Sanchez AM, Shuman S, Schwer B.

J Biol Chem. 2018 Mar 23;293(12):4456-4467. doi: 10.1074/jbc.RA117.001352. Epub 2018 Feb 2.

12.

Sirt4 is a mitochondrial regulator of metabolism and lifespan in Drosophila melanogaster.

Wood JG, Schwer B, Wickremesinghe PC, Hartnett DA, Burhenn L, Garcia M, Li M, Verdin E, Helfand SL.

Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):1564-1569. doi: 10.1073/pnas.1720673115. Epub 2018 Jan 29.

13.

Poly(A) site choice and Pol2 CTD Serine-5 status govern lncRNA control of phosphate-responsive tgp1 gene expression in fission yeast.

Sanchez AM, Shuman S, Schwer B.

RNA. 2018 Feb;24(2):237-250. doi: 10.1261/rna.063966.117. Epub 2017 Nov 9.

14.

Defining the DNA Binding Site Recognized by the Fission Yeast Zn2Cys6 Transcription Factor Pho7 and Its Role in Phosphate Homeostasis.

Schwer B, Sanchez AM, Garg A, Chatterjee D, Shuman S.

MBio. 2017 Aug 15;8(4). pii: e01218-17. doi: 10.1128/mBio.01218-17.

15.

Editorial: DNA damage & immunity.

Garinis GA, Schwer B, Schumacher B.

Mech Ageing Dev. 2017 Jul;165(Pt A):1-2. doi: 10.1016/j.mad.2017.04.006. Epub 2017 Apr 23. No abstract available.

16.

Will the circle be unbroken: specific mutations in the yeast Sm protein ring expose a requirement for assembly factor Brr1, a homolog of Gemin2.

Schwer B, Roth AJ, Shuman S.

RNA. 2017 Mar;23(3):420-430. doi: 10.1261/rna.059881.116. Epub 2016 Dec 14.

17.

Phospho-site mutants of the RNA Polymerase II C-terminal domain alter subtelomeric gene expression and chromatin modification state in fission yeast.

Inada M, Nichols RJ, Parsa JY, Homer CM, Benn RA, Hoxie RS, Madhani HD, Shuman S, Schwer B, Pleiss JA.

Nucleic Acids Res. 2016 Nov 2;44(19):9180-9189. Epub 2016 Jul 8.

19.

Characterization of the tRNA ligases of pathogenic fungi Aspergillus fumigatus and Coccidioides immitis.

Remus BS, Schwer B, Shuman S.

RNA. 2016 Oct;22(10):1500-9. doi: 10.1261/rna.057455.116. Epub 2016 Aug 4.

20.

Structure-function analysis and genetic interactions of the SmG, SmE, and SmF subunits of the yeast Sm protein ring.

Schwer B, Kruchten J, Shuman S.

RNA. 2016 Sep;22(9):1320-8. doi: 10.1261/rna.057448.116. Epub 2016 Jul 14.

21.

Structure-function analysis and genetic interactions of the Luc7 subunit of the Saccharomyces cerevisiae U1 snRNP.

Agarwal R, Schwer B, Shuman S.

RNA. 2016 Sep;22(9):1302-10. doi: 10.1261/rna.056911.116. Epub 2016 Jun 27.

22.
23.

Transcription-associated processes cause DNA double-strand breaks and translocations in neural stem/progenitor cells.

Schwer B, Wei PC, Chang AN, Kao J, Du Z, Meyers RM, Alt FW.

Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2258-63. doi: 10.1073/pnas.1525564113. Epub 2016 Feb 12.

24.

Long Neural Genes Harbor Recurrent DNA Break Clusters in Neural Stem/Progenitor Cells.

Wei PC, Chang AN, Kao J, Du Z, Meyers RM, Alt FW, Schwer B.

Cell. 2016 Feb 11;164(4):644-55. doi: 10.1016/j.cell.2015.12.039.

25.

Functional interaction of Rpb1 and Spt5 C-terminal domains in co-transcriptional histone modification.

Mbogning J, Pagé V, Burston J, Schwenger E, Fisher RP, Schwer B, Shuman S, Tanny JC.

Nucleic Acids Res. 2015 Nov 16;43(20):9766-75. doi: 10.1093/nar/gkv837. Epub 2015 Aug 14.

26.

RNA polymerase II CTD phospho-sites Ser5 and Ser7 govern phosphate homeostasis in fission yeast.

Schwer B, Sanchez AM, Shuman S.

RNA. 2015 Oct;21(10):1770-80. doi: 10.1261/rna.052555.115. Epub 2015 Aug 11.

29.

Genetic and structural analysis of the essential fission yeast RNA polymerase II CTD phosphatase Fcp1.

Schwer B, Ghosh A, Sanchez AM, Lima CD, Shuman S.

RNA. 2015 Jun;21(6):1135-46. doi: 10.1261/rna.050286.115. Epub 2015 Apr 16.

30.

Structural basis for recognition of intron branchpoint RNA by yeast Msl5 and selective effects of interfacial mutations on splicing of yeast pre-mRNAs.

Jacewicz A, Chico L, Smith P, Schwer B, Shuman S.

RNA. 2015 Mar;21(3):401-14. doi: 10.1261/rna.048942.114. Epub 2015 Jan 13.

31.

Fission yeast RNA triphosphatase reads an Spt5 CTD code.

Doamekpor SK, Schwer B, Sanchez AM, Shuman S, Lima CD.

RNA. 2015 Jan;21(1):113-23. doi: 10.1261/rna.048181.114. Epub 2014 Nov 20.

32.

Crystal structure, mutational analysis and RNA-dependent ATPase activity of the yeast DEAD-box pre-mRNA splicing factor Prp28.

Jacewicz A, Schwer B, Smith P, Shuman S.

Nucleic Acids Res. 2014 Nov 10;42(20):12885-98. doi: 10.1093/nar/gku930. Epub 2014 Oct 10.

33.

How an mRNA capping enzyme reads distinct RNA polymerase II and Spt5 CTD phosphorylation codes.

Doamekpor SK, Sanchez AM, Schwer B, Shuman S, Lima CD.

Genes Dev. 2014 Jun 15;28(12):1323-36. doi: 10.1101/gad.242768.114.

34.

Individual letters of the RNA polymerase II CTD code govern distinct gene expression programs in fission yeast.

Schwer B, Bitton DA, Sanchez AM, Bähler J, Shuman S.

Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4185-90. doi: 10.1073/pnas.1321842111. Epub 2014 Mar 3.

35.

IgH class switching exploits a general property of two DNA breaks to be joined in cis over long chromosomal distances.

Gostissa M, Schwer B, Chang A, Dong J, Meyers RM, Marecki GT, Choi VW, Chiarle R, Zarrin AA, Alt FW.

Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2644-9. doi: 10.1073/pnas.1324176111. Epub 2014 Feb 3.

36.
37.

The PAF complex and Prf1/Rtf1 delineate distinct Cdk9-dependent pathways regulating transcription elongation in fission yeast.

Mbogning J, Nagy S, Pagé V, Schwer B, Shuman S, Fisher RP, Tanny JC.

PLoS Genet. 2013;9(12):e1004029. doi: 10.1371/journal.pgen.1004029. Epub 2013 Dec 26.

38.
39.

SIRT6 modulates paclitaxel and epirubicin resistance and survival in breast cancer.

Khongkow M, Olmos Y, Gong C, Gomes AR, Monteiro LJ, Yagüe E, Cavaco TB, Khongkow P, Man EP, Laohasinnarong S, Koo CY, Harada-Shoji N, Tsang JW, Coombes RC, Schwer B, Khoo US, Lam EW.

Carcinogenesis. 2013 Jul;34(7):1476-86. doi: 10.1093/carcin/bgt098. Epub 2013 Mar 20.

PMID:
23514751
40.

Essential developmental, genomic stability, and tumour suppressor functions of the mouse orthologue of hSSB1/NABP2.

Shi W, Bain AL, Schwer B, Al-Ejeh F, Smith C, Wong L, Chai H, Miranda MS, Ho U, Kawaguchi M, Miura Y, Finnie JW, Wall M, Heierhorst J, Wicking C, Spring KJ, Alt FW, Khanna KK.

PLoS Genet. 2013;9(2):e1003298. doi: 10.1371/journal.pgen.1003298. Epub 2013 Feb 7.

41.

Mechanisms of programmed DNA lesions and genomic instability in the immune system.

Alt FW, Zhang Y, Meng FL, Guo C, Schwer B.

Cell. 2013 Jan 31;152(3):417-29. doi: 10.1016/j.cell.2013.01.007. Review.

42.

Functional redundancy between the XLF and DNA-PKcs DNA repair factors in V(D)J recombination and nonhomologous DNA end joining.

Oksenych V, Kumar V, Liu X, Guo C, Schwer B, Zha S, Alt FW.

Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2234-9. doi: 10.1073/pnas.1222573110. Epub 2013 Jan 23.

43.

Punctuation and syntax of the RNA polymerase II CTD code in fission yeast.

Schwer B, Sanchez AM, Shuman S.

Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):18024-9. doi: 10.1073/pnas.1208995109. Epub 2012 Oct 15.

44.

Classical and alternative end-joining pathways for repair of lymphocyte-specific and general DNA double-strand breaks.

Boboila C, Alt FW, Schwer B.

Adv Immunol. 2012;116:1-49. doi: 10.1016/B978-0-12-394300-2.00001-6. Review.

PMID:
23063072
45.
46.

A positive feedback loop links opposing functions of P-TEFb/Cdk9 and histone H2B ubiquitylation to regulate transcript elongation in fission yeast.

Sansó M, Lee KM, Viladevall L, Jacques PÉ, Pagé V, Nagy S, Racine A, St Amour CV, Zhang C, Shokat KM, Schwer B, Robert F, Fisher RP, Tanny JC.

PLoS Genet. 2012;8(8):e1002822. doi: 10.1371/journal.pgen.1002822. Epub 2012 Aug 2.

47.

A fungal anticodon nuclease ribotoxin exploits a secondary cleavage site to evade tRNA repair.

Meineke B, Kast A, Schwer B, Meinhardt F, Shuman S, Klassen R.

RNA. 2012 Sep;18(9):1716-24. doi: 10.1261/rna.034132.112. Epub 2012 Jul 26.

48.

Robust chromosomal DNA repair via alternative end-joining in the absence of X-ray repair cross-complementing protein 1 (XRCC1).

Boboila C, Oksenych V, Gostissa M, Wang JH, Zha S, Zhang Y, Chai H, Lee CS, Jankovic M, Saez LM, Nussenzweig MC, McKinnon PJ, Alt FW, Schwer B.

Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2473-8. doi: 10.1073/pnas.1121470109. Epub 2012 Jan 30. Erratum in: Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5731.

49.

Functional redundancy between repair factor XLF and damage response mediator 53BP1 in V(D)J recombination and DNA repair.

Oksenych V, Alt FW, Kumar V, Schwer B, Wesemann DR, Hansen E, Patel H, Su A, Guo C.

Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2455-60. doi: 10.1073/pnas.1121458109. Epub 2012 Jan 30.

50.

Structure-function analysis and genetic interactions of the yeast branchpoint binding protein Msl5.

Chang J, Schwer B, Shuman S.

Nucleic Acids Res. 2012 May;40(10):4539-52. doi: 10.1093/nar/gks049. Epub 2012 Jan 28.

Supplemental Content

Loading ...
Support Center