Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 47

1.

A molecular recombination map of Antirrhinum majus.

Schwarz-Sommer Z, Gübitz T, Weiss J, Gómez-di-Marco P, Delgado-Benarroch L, Hudson A, Egea-Cortines M.

BMC Plant Biol. 2010 Dec 15;10:275. doi: 10.1186/1471-2229-10-275.

2.

Tracing the evolution of the floral homeotic B- and C-function genes through genome synteny.

Causier B, Castillo R, Xue Y, Schwarz-Sommer Z, Davies B.

Mol Biol Evol. 2010 Nov;27(11):2651-64. doi: 10.1093/molbev/msq156. Epub 2010 Jun 20.

3.

Floral organ identity: 20 years of ABCs.

Causier B, Schwarz-Sommer Z, Davies B.

Semin Cell Dev Biol. 2010 Feb;21(1):73-9. doi: 10.1016/j.semcdb.2009.10.005. Epub 2009 Oct 31. Review.

PMID:
19883777
4.

Enhanced AGAMOUS expression in the centre of the Arabidopsis flower causes ectopic expression over its outer expression boundaries.

Cartolano M, Efremova N, Kuckenberg M, Raman S, Schwarz-Sommer Z.

Planta. 2009 Sep;230(4):857-62. doi: 10.1007/s00425-009-0966-7. Epub 2009 Jun 24.

5.

A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity.

Cartolano M, Castillo R, Efremova N, Kuckenberg M, Zethof J, Gerats T, Schwarz-Sommer Z, Vandenbussche M.

Nat Genet. 2007 Jul;39(7):901-5. Epub 2007 Jun 24.

PMID:
17589508
6.

Evolution in action: following function in duplicated floral homeotic genes.

Causier B, Castillo R, Zhou J, Ingram R, Xue Y, Schwarz-Sommer Z, Davies B.

Curr Biol. 2005 Aug 23;15(16):1508-12.

7.

Functional conservation and maintenance of expression pattern of FIDDLEHEAD-like genes in Arabidopsis and Antirrhinum.

Efremova N, Schreiber L, Bär S, Heidmann I, Huijser P, Wellesen K, Schwarz-Sommer Z, Saedler H, Yephremov A.

Plant Mol Biol. 2004 Nov;56(5):821-37. Epub 2005 Mar 24.

PMID:
15803418
8.

INCOMPOSITA: a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum.

Masiero S, Li MA, Will I, Hartmann U, Saedler H, Huijser P, Schwarz-Sommer Z, Sommer H.

Development. 2004 Dec;131(23):5981-90.

9.

Characterization of antirrhinum petal development and identification of target genes of the class B MADS box gene DEFICIENS.

Bey M, Stüber K, Fellenberg K, Schwarz-Sommer Z, Sommer H, Saedler H, Zachgo S.

Plant Cell. 2004 Dec;16(12):3197-215. Epub 2004 Nov 11.

10.

Molecular and genetic interactions between STYLOSA and GRAMINIFOLIA in the control of Antirrhinum vegetative and reproductive development.

Navarro C, Efremova N, Golz JF, Rubiera R, Kuckenberg M, Castillo R, Tietz O, Saedler H, Schwarz-Sommer Z.

Development. 2004 Aug;131(15):3649-59. Epub 2004 Jun 30.

11.

Comparison of ESTs from juvenile and adult phases of the giant unicellular green alga Acetabularia acetabulum.

Henry IM, Wilkinson MD, Hernandez JM, Schwarz-Sommer Z, Grotewold E, Mandoli DF.

BMC Plant Biol. 2004 Mar 12;4:3.

12.

CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum.

Weir I, Lu J, Cook H, Causier B, Schwarz-Sommer Z, Davies B.

Development. 2004 Feb;131(4):915-22.

13.

An everlasting pioneer: the story of Antirrhinum research.

Schwarz-Sommer Z, Davies B, Hudson A.

Nat Rev Genet. 2003 Aug;4(8):657-66. doi: 10.1038/nrg1127.

PMID:
12897777
14.

Syntaxin specificity of cytokinesis in Arabidopsis.

Müller I, Wagner W, Völker A, Schellmann S, Nacry P, Küttner F, Schwarz-Sommer Z, Mayer U, Jürgens G.

Nat Cell Biol. 2003 Jun;5(6):531-4.

PMID:
12738961
15.

A linkage map of an F2 hybrid population of Antirrhinum majus and A. molle.

Schwarz-Sommer Z, de Andrade Silva E, Berndtgen R, Lönnig WE, Müller A, Nindl I, Stüber K, Wunder J, Saedler H, Gübitz T, Borking A, Golz JF, Ritter E, Hudson A.

Genetics. 2003 Feb;163(2):699-710.

16.

The mechanics of cell fate determination in petals.

Martin C, Bhatt K, Baumann K, Jin H, Zachgo S, Roberts K, Schwarz-Sommer Z, Glover B, Perez-Rodrigues M.

Philos Trans R Soc Lond B Biol Sci. 2002 Jun 29;357(1422):809-13. Review.

17.

Epidermal control of floral organ identity by class B homeotic genes in Antirrhinum and Arabidopsis.

Efremova N, Perbal MC, Yephremov A, Hofmann WA, Saedler H, Schwarz-Sommer Z.

Development. 2001 Jul;128(14):2661-71.

18.
19.

CHORIPETALA and DESPENTEADO: general regulators during plant development and potential floral targets of FIMBRIATA-mediated degradation.

Wilkinson M, de Andrade Silva E, Zachgo S, Saedler H, Schwarz-Sommer Z.

Development. 2000 Sep;127(17):3725-34.

20.

Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis.

Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G.

Science. 2000 Jun 2;288(5471):1613-6.

21.

PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development.

Davies B, Motte P, Keck E, Saedler H, Sommer H, Schwarz-Sommer Z.

EMBO J. 1999 Jul 15;18(14):4023-34.

22.

Molecular analysis of a second functional A1 gene (dihydroflavonol 4-reductase) in Zea mays.

Bernhardt J, Stich K, Schwarz-Sommer Z, Saedler H, Wienand U.

Plant J. 1998 May;14(4):483-8.

23.
24.
25.
26.

Functional analysis of the Antirrhinum floral homeotic DEFICIENS gene in vivo and in vitro by using a temperature-sensitive mutant.

Zachgo S, Silva Ede A, Motte P, Tröbner W, Saedler H, Schwarz-Sommer Z.

Development. 1995 Sep;121(9):2861-75.

27.

FIL2, an extracellular Leucine-Rich Repeat protein, is specifically expressed in Antirrhinum flowers.

Steinmayr M, Motte P, Sommer H, Saedler H, Schwarz-Sommer Z.

Plant J. 1994 Apr;5(4):459-67.

28.

Control of floral organ identity by homeotic MADS-box transcription factors.

Davies B, Schwarz-Sommer Z.

Results Probl Cell Differ. 1994;20:235-58. Review. No abstract available.

PMID:
7913550
29.

Floral development and expression of floral homeotic genes are influenced by cytokinins.

Estruch JJ, Granell A, Hansen G, Prinsen E, Redig P, Van Onckelen H, Schwarz-Sommer Z, Sommer H, Spena A.

Plant J. 1993 Aug;4(2):379-84.

30.

GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis.

Tröbner W, Ramirez L, Motte P, Hue I, Huijser P, Lönnig WE, Saedler H, Sommer H, Schwarz-Sommer Z.

EMBO J. 1992 Dec;11(13):4693-704.

31.

Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development.

Schwarz-Sommer Z, Hue I, Huijser P, Flor PJ, Hansen R, Tetens F, Lönnig WE, Saedler H, Sommer H.

EMBO J. 1992 Jan;11(1):251-63.

32.
33.

Genetic Control of Flower Development by Homeotic Genes in Antirrhinum majus.

Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H.

Science. 1990 Nov 16;250(4983):931-6.

PMID:
17746916
34.

Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors.

Sommer H, Beltrán JP, Huijser P, Pape H, Lönnig WE, Saedler H, Schwarz-Sommer Z.

EMBO J. 1990 Mar;9(3):605-13.

35.

Cin4, an insert altering the structure of the A1 gene in Zea mays, exhibits properties of nonviral retrotransposons.

Schwarz-Sommer Z, Leclercq L, Göbel E, Saedler H.

EMBO J. 1987 Dec 20;6(13):3873-80.

36.

Can plant transposable elements generate novel regulatory systems?

Schwarz-Sommer Z, Saedler H.

Mol Gen Genet. 1987 Sep;209(2):207-9. Review. No abstract available.

PMID:
17191336
37.

Influence of transposable elements on the structure and function of the A1 gene of Zea mays.

Schwarz-Sommer Z, Shepherd N, Tacke E, Gierl A, Rohde W, Leclercq L, Mattes M, Berndtgen R, Peterson PA, Saedler H.

EMBO J. 1987 Feb;6(2):287-94.

38.

The significance of plant transposable elements in biological processes.

Schwarz-Sommer Z.

Results Probl Cell Differ. 1987;14:213-21. Review. No abstract available.

PMID:
3039624
39.

Molecular analysis of the En/Spm transposable element system of Zea mays.

Pereira A, Cuypers H, Gierl A, Schwarz-Sommer Z, Saedler H.

EMBO J. 1986 May;5(5):835-41.

40.

Sequence comparison of 'states' of a1-m1 suggests a model of Spm (En) action.

Schwarz-Sommer Z, Gierl A, Berndtgen R, Saedler H.

EMBO J. 1985 Oct;4(10):2439-43.

41.

Molecular cloning of the a1 locus of Zea mays using the transposable elements En and Mu1.

O'Reilly C, Shepherd NS, Pereira A, Schwarz-Sommer Z, Bertram I, Robertson DS, Peterson PA, Saedler H.

EMBO J. 1985 Apr;4(4):877-82.

42.

Plant transposable elements generate the DNA sequence diversity needed in evolution.

Schwarz-Sommer Z, Gierl A, Cuypers H, Peterson PA, Saedler H.

EMBO J. 1985 Mar;4(3):591-7.

43.
44.

Genetic and molecular analysis of the Enhancer (En) transposable element system of Zea mays.

Pereira A, Schwarz-Sommer Z, Gierl A, Bertram I, Peterson PA, Saedler H.

EMBO J. 1985 Jan;4(1):17-23.

45.

The Spm (En) transposable element controls the excision of a 2-kb DNA insert at the wx allele of Zea mays.

Schwarz-Sommer Z, Gierl A, Klösgen RB, Wienand U, Peterson PA, Saedler H.

EMBO J. 1984 May;3(5):1021-8.

46.

Similarity of the Cin1 repetitive family of Zea mays to eukaryotic transposable elements.

Shepherd NS, Schwarz-Sommer Z, Blumberg vel Spalve J, Gupta M, Wienand U, Saedler H.

Nature. 1984 Jan 12-18;307(5947):185-7.

PMID:
6318125
47.

Transposable elements in Antirrhinum majus and Zea mays.

Saedler H, Bonas U, Gierl A, Harrison BJ, Klösgen RB, Krebbers E, Nevers P, Peterson PA, Schwarz-Sommer Z, Sommer H, et al.

Cold Spring Harb Symp Quant Biol. 1984;49:355-61. No abstract available.

PMID:
6099247

Supplemental Content

Loading ...
Support Center