Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 34

1.

Balancing Extrasynaptic Excitation and Synaptic Inhibition within Olfactory Bulb Glomeruli.

Gire DH, Zak JD, Bourne JN, Goodson NB, Schoppa NE.

eNeuro. 2019 Aug 7;6(4). pii: ENEURO.0247-19.2019. doi: 10.1523/ENEURO.0247-19.2019. Print 2019 Jul/Aug.

2.

Cannabinoid Receptors Modulate Excitation of an Olfactory Bulb Local Circuit by Cortical Feedback.

Pouille F, Schoppa NE.

Front Cell Neurosci. 2018 Mar 2;12:47. doi: 10.3389/fncel.2018.00047. eCollection 2018.

3.

Intraglomerular gap junctions enhance interglomerular synchrony in a sparsely connected olfactory bulb network.

Pouille F, McTavish TS, Hunter LE, Restrepo D, Schoppa NE.

J Physiol. 2017 Sep 1;595(17):5965-5986. doi: 10.1113/JP274408. Epub 2017 Jul 23.

4.

Three-dimensional synaptic analyses of mitral cell and external tufted cell dendrites in rat olfactory bulb glomeruli.

Bourne JN, Schoppa NE.

J Comp Neurol. 2017 Feb 15;525(3):592-609. doi: 10.1002/cne.24089. Epub 2016 Aug 18.

5.

The trans-SNARE-regulating function of Munc18-1 is essential to synaptic exocytosis.

Shen C, Rathore SS, Yu H, Gulbranson DR, Hua R, Zhang C, Schoppa NE, Shen J.

Nat Commun. 2015 Nov 17;6:8852. doi: 10.1038/ncomms9852.

6.

Metabotropic glutamate receptors promote disinhibition of olfactory bulb glomeruli that scales with input strength.

Zak JD, Whitesell JD, Schoppa NE.

J Neurophysiol. 2015 Mar 15;113(6):1907-20. doi: 10.1152/jn.00222.2014. Epub 2014 Dec 31.

7.

Matching of feedback inhibition with excitation ensures fidelity of information flow in the anterior piriform cortex.

Sheridan DC, Hughes AR, Erd├ęlyi F, Szab├│ G, Hentges ST, Schoppa NE.

Neuroscience. 2014 Sep 5;275:519-30. doi: 10.1016/j.neuroscience.2014.06.033. Epub 2014 Jun 24.

8.

One in a thousand: defining the limits of olfactory perception.

Schoppa NE.

Nat Neurosci. 2013 Nov;16(11):1516-7. doi: 10.1038/nn.3551. No abstract available.

PMID:
24165677
9.

Interglomerular lateral inhibition targeted on external tufted cells in the olfactory bulb.

Whitesell JD, Sorensen KA, Jarvie BC, Hentges ST, Schoppa NE.

J Neurosci. 2013 Jan 23;33(4):1552-63. doi: 10.1523/JNEUROSCI.3410-12.2013.

10.

Age-dependent adrenergic actions in the main olfactory bulb that could underlie an olfactory-sensitive period.

Pandipati S, Schoppa NE.

J Neurophysiol. 2012 Oct;108(7):1999-2007. doi: 10.1152/jn.00322.2012. Epub 2012 Jul 18.

11.

Mitral cells in the olfactory bulb are mainly excited through a multistep signaling path.

Gire DH, Franks KM, Zak JD, Tanaka KF, Whitesell JD, Mulligan AA, Hen R, Schoppa NE.

J Neurosci. 2012 Feb 29;32(9):2964-75. doi: 10.1523/JNEUROSCI.5580-11.2012.

12.

Spike timing improves olfactory capabilities in mammals.

Schoppa NE.

Neuron. 2010 Nov 4;68(3):329-31. doi: 10.1016/j.neuron.2010.10.023.

13.

Adrenergic receptor-mediated disinhibition of mitral cells triggers long-term enhancement of synchronized oscillations in the olfactory bulb.

Pandipati S, Gire DH, Schoppa NE.

J Neurophysiol. 2010 Aug;104(2):665-74. doi: 10.1152/jn.00328.2010. Epub 2010 Jun 10.

14.

Control of on/off glomerular signaling by a local GABAergic microcircuit in the olfactory bulb.

Gire DH, Schoppa NE.

J Neurosci. 2009 Oct 28;29(43):13454-64. doi: 10.1523/JNEUROSCI.2368-09.2009.

15.

Inhibition acts globally to shape olfactory cortical tuning.

Schoppa NE.

Neuron. 2009 Jun 25;62(6):750-2. doi: 10.1016/j.neuron.2009.06.004.

16.

Making scents out of how olfactory neurons are ordered in space.

Schoppa NE.

Nat Neurosci. 2009 Feb;12(2):103-4. doi: 10.1038/nn0209-103. Review. No abstract available.

PMID:
19172161
17.

GABAergic circuits control input-spike coupling in the piriform cortex.

Luna VM, Schoppa NE.

J Neurosci. 2008 Aug 27;28(35):8851-9. doi: 10.1523/JNEUROSCI.2385-08.2008.

18.

Long-term enhancement of synchronized oscillations by adrenergic receptor activation in the olfactory bulb.

Gire DH, Schoppa NE.

J Neurophysiol. 2008 Apr;99(4):2021-5. doi: 10.1152/jn.01324.2007. Epub 2008 Feb 6.

19.
20.
21.
22.

Dendritic processing within olfactory bulb circuits.

Schoppa NE, Urban NN.

Trends Neurosci. 2003 Sep;26(9):501-6. Review.

PMID:
12948662
23.

AMPA autoreceptors drive correlated spiking in olfactory bulb glomeruli.

Schoppa NE, Westbrook GL.

Nat Neurosci. 2002 Nov;5(11):1194-202.

PMID:
12379859
24.

NMDA receptors turn to another channel for inhibition.

Schoppa NE, Westbrook GL.

Neuron. 2001 Sep 27;31(6):877-9.

25.

Glomerulus-specific synchronization of mitral cells in the olfactory bulb.

Schoppa NE, Westbrook GL.

Neuron. 2001 Aug 30;31(4):639-51.

26.

Tufted cell dendrodendritic inhibition in the olfactory bulb is dependent on NMDA receptor activity.

Christie JM, Schoppa NE, Westbrook GL.

J Neurophysiol. 2001 Jan;85(1):169-73.

27.

Regulation of synaptic timing in the olfactory bulb by an A-type potassium current.

Schoppa NE, Westbrook GL.

Nat Neurosci. 1999 Dec;2(12):1106-13.

PMID:
10570488
28.

Dendrodendritic inhibition in the olfactory bulb is driven by NMDA receptors.

Schoppa NE, Kinzie JM, Sahara Y, Segerson TP, Westbrook GL.

J Neurosci. 1998 Sep 1;18(17):6790-802.

29.
30.

Activation of Shaker potassium channels. II. Kinetics of the V2 mutant channel.

Schoppa NE, Sigworth FJ.

J Gen Physiol. 1998 Feb;111(2):295-311.

31.
32.

Modulation of mEPSCs in olfactory bulb mitral cells by metabotropic glutamate receptors.

Schoppa NE, Westbrook GL.

J Neurophysiol. 1997 Sep;78(3):1468-75.

33.

Functional expression and purification of a homomeric human alpha 1 glycine receptor in baculovirus-infected insect cells.

Cascio M, Schoppa NE, Grodzicki RL, Sigworth FJ, Fox RO.

J Biol Chem. 1993 Oct 15;268(29):22135-42.

34.

The size of gating charge in wild-type and mutant Shaker potassium channels.

Schoppa NE, McCormack K, Tanouye MA, Sigworth FJ.

Science. 1992 Mar 27;255(5052):1712-5.

PMID:
1553560

Supplemental Content

Loading ...
Support Center