Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 34

1.

Balancing Extrasynaptic Excitation and Synaptic Inhibition within Olfactory Bulb Glomeruli.

Gire DH, Zak JD, Bourne JN, Goodson NB, Schoppa NE.

eNeuro. 2019 Aug 7;6(4). pii: ENEURO.0247-19.2019. doi: 10.1523/ENEURO.0247-19.2019. Print 2019 Jul/Aug.

2.

Cannabinoid Receptors Modulate Excitation of an Olfactory Bulb Local Circuit by Cortical Feedback.

Pouille F, Schoppa NE.

Front Cell Neurosci. 2018 Mar 2;12:47. doi: 10.3389/fncel.2018.00047. eCollection 2018.

3.

Intraglomerular gap junctions enhance interglomerular synchrony in a sparsely connected olfactory bulb network.

Pouille F, McTavish TS, Hunter LE, Restrepo D, Schoppa NE.

J Physiol. 2017 Sep 1;595(17):5965-5986. doi: 10.1113/JP274408. Epub 2017 Jul 23.

4.

Three-dimensional synaptic analyses of mitral cell and external tufted cell dendrites in rat olfactory bulb glomeruli.

Bourne JN, Schoppa NE.

J Comp Neurol. 2017 Feb 15;525(3):592-609. doi: 10.1002/cne.24089. Epub 2016 Aug 18.

5.

The trans-SNARE-regulating function of Munc18-1 is essential to synaptic exocytosis.

Shen C, Rathore SS, Yu H, Gulbranson DR, Hua R, Zhang C, Schoppa NE, Shen J.

Nat Commun. 2015 Nov 17;6:8852. doi: 10.1038/ncomms9852.

6.

Metabotropic glutamate receptors promote disinhibition of olfactory bulb glomeruli that scales with input strength.

Zak JD, Whitesell JD, Schoppa NE.

J Neurophysiol. 2015 Mar 15;113(6):1907-20. doi: 10.1152/jn.00222.2014. Epub 2014 Dec 31.

7.

Matching of feedback inhibition with excitation ensures fidelity of information flow in the anterior piriform cortex.

Sheridan DC, Hughes AR, Erdélyi F, Szabó G, Hentges ST, Schoppa NE.

Neuroscience. 2014 Sep 5;275:519-30. doi: 10.1016/j.neuroscience.2014.06.033. Epub 2014 Jun 24.

8.

One in a thousand: defining the limits of olfactory perception.

Schoppa NE.

Nat Neurosci. 2013 Nov;16(11):1516-7. doi: 10.1038/nn.3551. No abstract available.

PMID:
24165677
9.

Interglomerular lateral inhibition targeted on external tufted cells in the olfactory bulb.

Whitesell JD, Sorensen KA, Jarvie BC, Hentges ST, Schoppa NE.

J Neurosci. 2013 Jan 23;33(4):1552-63. doi: 10.1523/JNEUROSCI.3410-12.2013.

10.

Age-dependent adrenergic actions in the main olfactory bulb that could underlie an olfactory-sensitive period.

Pandipati S, Schoppa NE.

J Neurophysiol. 2012 Oct;108(7):1999-2007. doi: 10.1152/jn.00322.2012. Epub 2012 Jul 18.

11.

Mitral cells in the olfactory bulb are mainly excited through a multistep signaling path.

Gire DH, Franks KM, Zak JD, Tanaka KF, Whitesell JD, Mulligan AA, Hen R, Schoppa NE.

J Neurosci. 2012 Feb 29;32(9):2964-75. doi: 10.1523/JNEUROSCI.5580-11.2012.

12.

Spike timing improves olfactory capabilities in mammals.

Schoppa NE.

Neuron. 2010 Nov 4;68(3):329-31. doi: 10.1016/j.neuron.2010.10.023.

13.

Adrenergic receptor-mediated disinhibition of mitral cells triggers long-term enhancement of synchronized oscillations in the olfactory bulb.

Pandipati S, Gire DH, Schoppa NE.

J Neurophysiol. 2010 Aug;104(2):665-74. doi: 10.1152/jn.00328.2010. Epub 2010 Jun 10.

14.

Control of on/off glomerular signaling by a local GABAergic microcircuit in the olfactory bulb.

Gire DH, Schoppa NE.

J Neurosci. 2009 Oct 28;29(43):13454-64. doi: 10.1523/JNEUROSCI.2368-09.2009.

15.

Inhibition acts globally to shape olfactory cortical tuning.

Schoppa NE.

Neuron. 2009 Jun 25;62(6):750-2. doi: 10.1016/j.neuron.2009.06.004.

16.

Making scents out of how olfactory neurons are ordered in space.

Schoppa NE.

Nat Neurosci. 2009 Feb;12(2):103-4. doi: 10.1038/nn0209-103. Review. No abstract available.

PMID:
19172161
17.

GABAergic circuits control input-spike coupling in the piriform cortex.

Luna VM, Schoppa NE.

J Neurosci. 2008 Aug 27;28(35):8851-9. doi: 10.1523/JNEUROSCI.2385-08.2008.

18.

Long-term enhancement of synchronized oscillations by adrenergic receptor activation in the olfactory bulb.

Gire DH, Schoppa NE.

J Neurophysiol. 2008 Apr;99(4):2021-5. doi: 10.1152/jn.01324.2007. Epub 2008 Feb 6.

19.
20.
21.
22.

Dendritic processing within olfactory bulb circuits.

Schoppa NE, Urban NN.

Trends Neurosci. 2003 Sep;26(9):501-6. Review.

PMID:
12948662
23.

AMPA autoreceptors drive correlated spiking in olfactory bulb glomeruli.

Schoppa NE, Westbrook GL.

Nat Neurosci. 2002 Nov;5(11):1194-202.

PMID:
12379859
24.

NMDA receptors turn to another channel for inhibition.

Schoppa NE, Westbrook GL.

Neuron. 2001 Sep 27;31(6):877-9.

25.

Glomerulus-specific synchronization of mitral cells in the olfactory bulb.

Schoppa NE, Westbrook GL.

Neuron. 2001 Aug 30;31(4):639-51.

26.

Tufted cell dendrodendritic inhibition in the olfactory bulb is dependent on NMDA receptor activity.

Christie JM, Schoppa NE, Westbrook GL.

J Neurophysiol. 2001 Jan;85(1):169-73.

27.

Regulation of synaptic timing in the olfactory bulb by an A-type potassium current.

Schoppa NE, Westbrook GL.

Nat Neurosci. 1999 Dec;2(12):1106-13.

PMID:
10570488
28.

Dendrodendritic inhibition in the olfactory bulb is driven by NMDA receptors.

Schoppa NE, Kinzie JM, Sahara Y, Segerson TP, Westbrook GL.

J Neurosci. 1998 Sep 1;18(17):6790-802.

29.
30.

Activation of Shaker potassium channels. II. Kinetics of the V2 mutant channel.

Schoppa NE, Sigworth FJ.

J Gen Physiol. 1998 Feb;111(2):295-311.

31.
32.

Modulation of mEPSCs in olfactory bulb mitral cells by metabotropic glutamate receptors.

Schoppa NE, Westbrook GL.

J Neurophysiol. 1997 Sep;78(3):1468-75.

33.

Functional expression and purification of a homomeric human alpha 1 glycine receptor in baculovirus-infected insect cells.

Cascio M, Schoppa NE, Grodzicki RL, Sigworth FJ, Fox RO.

J Biol Chem. 1993 Oct 15;268(29):22135-42.

34.

The size of gating charge in wild-type and mutant Shaker potassium channels.

Schoppa NE, McCormack K, Tanouye MA, Sigworth FJ.

Science. 1992 Mar 27;255(5052):1712-5.

PMID:
1553560

Supplemental Content

Loading ...
Support Center