Format

Send to

Choose Destination
mSphere. 2018 Jan 24;3(1). pii: e00522-17. doi: 10.1128/mSphere.00522-17. eCollection 2018 Jan-Feb.

BioID Reveals Novel Proteins of the Plasmodium Parasitophorous Vacuole Membrane.

Author information

1
Institute of Cell Biology, University of Bern, Bern, Switzerland.
2
Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
3
Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales, Australia.
4
Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
5
Department of Health Sciences and Technology, BMPP, ETH Zurich, Zurich, Switzerland.

Abstract

During their development within the vertebrate host, Plasmodium parasites infect hepatocytes and red blood cells. Within these cells, parasites are surrounded by a parasitophorous vacuole membrane (PVM). The PVM plays an essential role for the interaction of parasites with their host cells; however, only a limited number of proteins of this membrane have been identified so far. This is partially because systematic proteomic analysis of the protein content of the PVM has been difficult in the past, due to difficulties encountered in attempts to separate the PVM from other membranes such as the parasite plasma membrane. In this study, we adapted the BioID technique to in vitro-cultivated Plasmodium berghei blood stage parasites and utilized the promiscuous biotin ligase BirA* fused to PVM-resident exported protein 1 to biotinylate proteins of the PVM. These we further processed by affinity purification, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and label-free quantitation, leading to a list of 61 known and candidate PVM proteins. Seven proteins were analyzed further during blood and liver stage development. This resulted in the identification of three novel PVM proteins, which were the serine/threonine protein phosphatase UIS2 (PlasmoDB accession no. PBANKA_1328000) and two conserved Plasmodium proteins with unknown functions (PBANKA_0519300 and PBANKA_0509000). In conclusion, our report expands the number of known PVM proteins and experimentally validates BioID as a powerful method to screen for novel constituents of specific cellular compartments in P. berghei. IMPORTANCE Intracellular pathogens are often surrounded by a host-cell derived membrane. This membrane is modified by the pathogens to their own needs and is crucial for their intracellular lifestyle. In Plasmodium parasites, this membrane is referred to as the PVM and only a limited number of its proteins are known so far. Here, we applied in rodent P. berghei parasites a method called BioID, which is based on biotinylation of proximal and interacting proteins by the promiscuous biotin ligase BirA*, and demonstrated its usefulness in identification of novel PVM proteins.

KEYWORDS:

BioID; PVM; Plasmodium; blood stage; liver stage; membranes

Supplemental Content

Full text links

Icon for American Society for Microbiology Icon for PubMed Central
Loading ...
Support Center