Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 92

1.

Translational Approaches Targeting Ceramide Generation From Sphingomyelin in T Cells to Modulate Immunity in Humans.

Hollmann C, Wiese T, Dennstädt F, Fink J, Schneider-Schaulies J, Beyersdorf N.

Front Immunol. 2019 Oct 11;10:2363. doi: 10.3389/fimmu.2019.02363. eCollection 2019.

2.

Use of Acid Ceramidase and Sphingosine Kinase Inhibitors as Antiviral Compounds Against Measles Virus Infection of Lymphocytes in vitro.

Grafen A, Schumacher F, Chithelen J, Kleuser B, Beyersdorf N, Schneider-Schaulies J.

Front Cell Dev Biol. 2019 Oct 1;7:218. doi: 10.3389/fcell.2019.00218. eCollection 2019.

3.

KDELR2 Competes with Measles Virus Envelope Proteins for Cellular Chaperones Reducing Their Chaperone-Mediated Cell Surface Transport.

Tiwarekar V, Fehrholz M, Schneider-Schaulies J.

Viruses. 2019 Jan 4;11(1). pii: E27. doi: 10.3390/v11010027.

4.

APOBEC3G-Regulated Host Factors Interfere with Measles Virus Replication: Role of REDD1 and Mammalian TORC1 Inhibition.

Tiwarekar V, Wohlfahrt J, Fehrholz M, Scholz CJ, Kneitz S, Schneider-Schaulies J.

J Virol. 2018 Aug 16;92(17). pii: e00835-18. doi: 10.1128/JVI.00835-18. Print 2018 Sep 1.

5.

CD4+ Foxp3+ regulatory T cell-mediated immunomodulation by anti-depressants inhibiting acid sphingomyelinase.

Schneider-Schaulies J, Beyersdorf N.

Biol Chem. 2018 Sep 25;399(10):1175-1182. doi: 10.1515/hsz-2018-0159. Review.

PMID:
29908119
6.

Inhibition of Acid Sphingomyelinase Allows for Selective Targeting of CD4+ Conventional versus Foxp3+ Regulatory T Cells.

Hollmann C, Werner S, Avota E, Reuter D, Japtok L, Kleuser B, Gulbins E, Becker KA, Schneider-Schaulies J, Beyersdorf N.

J Immunol. 2016 Oct 15;197(8):3130-3141. Epub 2016 Sep 16.

7.

The Plant-Derived Naphthoquinone Droserone Inhibits In Vitro Measles Virus Infection.

Lieberherr C, Zhang G, Grafen A, Singethan K, Kendl S, Vogt V, Maier J, Bringmann G, Schneider-Schaulies J.

Planta Med. 2017 Feb;83(3-04):232-238. doi: 10.1055/s-0042-111825. Epub 2016 Jul 15.

PMID:
27420351
8.

Canine Distemper Virus Fusion Activation: Critical Role of Residue E123 of CD150/SLAM.

Khosravi M, Bringolf F, Röthlisberger S, Bieringer M, Schneider-Schaulies J, Zurbriggen A, Origgi F, Plattet P.

J Virol. 2015 Nov 25;90(3):1622-37. doi: 10.1128/JVI.02405-15. Print 2016 Feb 1.

9.

The phosphoprotein genes of measles viruses from subacute sclerosing panencephalitis cases encode functional as well as non-functional proteins and display reduced editing.

Millar EL, Rennick LJ, Weissbrich B, Schneider-Schaulies J, Duprex WP, Rima BK.

Virus Res. 2016 Jan 4;211:29-37. doi: 10.1016/j.virusres.2015.09.016. Epub 2015 Sep 28.

PMID:
26428304
10.

Sphingolipids in viral infection.

Schneider-Schaulies J, Schneider-Schaulies S.

Biol Chem. 2015 Jun;396(6-7):585-95. doi: 10.1515/hsz-2014-0273.

PMID:
25525752
11.

Cotton rat (Sigmodon hispidus) signaling lymphocyte activation molecule (CD150) is an entry receptor for measles virus.

Carsillo T, Huey D, Levinsky A, Obojes K, Schneider-Schaulies J, Niewiesk S.

PLoS One. 2014 Oct 8;9(10):e110120. doi: 10.1371/journal.pone.0110120. eCollection 2014.

12.

Molecular determinants defining the triggering range of prefusion F complexes of canine distemper virus.

Avila M, Alves L, Khosravi M, Ader-Ebert N, Origgi F, Schneider-Schaulies J, Zurbriggen A, Plemper RK, Plattet P.

J Virol. 2014 Mar;88(5):2951-66. doi: 10.1128/JVI.03123-13. Epub 2013 Dec 26.

13.

Viral infections and sphingolipids.

Schneider-Schaulies J, Schneider-Schaulies S.

Handb Exp Pharmacol. 2013;(216):321-40. doi: 10.1007/978-3-7091-1511-4_16. Review.

PMID:
23563664
14.

Experimental adaptation of wild-type canine distemper virus (CDV) to the human entry receptor CD150.

Bieringer M, Han JW, Kendl S, Khosravi M, Plattet P, Schneider-Schaulies J.

PLoS One. 2013;8(3):e57488. doi: 10.1371/journal.pone.0057488. Epub 2013 Mar 12.

15.

The receptor attachment function of measles virus hemagglutinin can be replaced with an autonomous protein that binds Her2/neu while maintaining its fusion-helper function.

Rasbach A, Abel T, Münch RC, Boller K, Schneider-Schaulies J, Buchholz CJ.

J Virol. 2013 Jun;87(11):6246-56. doi: 10.1128/JVI.03298-12. Epub 2013 Mar 27.

16.

Mechanism for active membrane fusion triggering by morbillivirus attachment protein.

Ader N, Brindley M, Avila M, Örvell C, Horvat B, Hiltensperger G, Schneider-Schaulies J, Vandevelde M, Zurbriggen A, Plemper RK, Plattet P.

J Virol. 2013 Jan;87(1):314-26. doi: 10.1128/JVI.01826-12. Epub 2012 Oct 17.

17.

Measles virus glycoprotein-based lentiviral targeting vectors that avoid neutralizing antibodies.

Kneissl S, Abel T, Rasbach A, Brynza J, Schneider-Schaulies J, Buchholz CJ.

PLoS One. 2012;7(10):e46667. doi: 10.1371/journal.pone.0046667. Epub 2012 Oct 10.

18.

Foxp3+ regulatory T cells control persistence of viral CNS infection.

Reuter D, Sparwasser T, Hünig T, Schneider-Schaulies J.

PLoS One. 2012;7(3):e33989. doi: 10.1371/journal.pone.0033989. Epub 2012 Mar 20.

19.

The innate antiviral factor APOBEC3G targets replication of measles, mumps and respiratory syncytial viruses.

Fehrholz M, Kendl S, Prifert C, Weissbrich B, Lemon K, Rennick L, Duprex PW, Rima BK, Koning FA, Holmes RK, Malim MH, Schneider-Schaulies J.

J Gen Virol. 2012 Mar;93(Pt 3):565-76. doi: 10.1099/vir.0.038919-0. Epub 2011 Dec 14.

PMID:
22170635
20.

CD209/DC-SIGN mediates efficient infection of monocyte-derived dendritic cells by clinical adenovirus 2C isolates in the presence of bovine lactoferrin.

Günther PS, Mikeler E, Hamprecht K, Schneider-Schaulies J, Jahn G, Dennehy KM.

J Gen Virol. 2011 Aug;92(Pt 8):1754-9. doi: 10.1099/vir.0.030965-0. Epub 2011 May 11.

PMID:
21562123
21.

HIV-1 assembly differentially alters dynamics and partitioning of tetraspanins and raft components.

Krementsov DN, Rassam P, Margeat E, Roy NH, Schneider-Schaulies J, Milhiet PE, Thali M.

Traffic. 2010 Nov;11(11):1401-14.

22.

N-(3-Cyanophenyl)-2-phenylacetamide, an effective inhibitor of morbillivirus-induced membrane fusion with low cytotoxicity.

Singethan K, Hiltensperger G, Kendl S, Wohlfahrt J, Plattet P, Holzgrabe U, Schneider-Schaulies J.

J Gen Virol. 2010 Nov;91(Pt 11):2762-72. doi: 10.1099/vir.0.025650-0. Epub 2010 Aug 4.

PMID:
20685931
23.

Measles virus infection of the CNS: human disease, animal models, and approaches to therapy.

Reuter D, Schneider-Schaulies J.

Med Microbiol Immunol. 2010 Aug;199(3):261-71. doi: 10.1007/s00430-010-0153-2. Review.

PMID:
20390298
24.

Systemic spread of measles virus: overcoming the epithelial and endothelial barriers.

Ludlow M, Allen I, Schneider-Schaulies J.

Thromb Haemost. 2009 Dec;102(6):1050-6. doi: 10.1160/TH09-03-0202. Review.

PMID:
19967134
25.

Tetraspanins: Small transmembrane proteins with big impact on membrane microdomain structures.

Singethan K, Schneider-Schaulies J.

Commun Integr Biol. 2008;1(1):11-3.

26.

Clearance of measles virus from persistently infected cells by short hairpin RNA.

Zinke M, Kendl S, Singethan K, Fehrholz M, Reuter D, Rennick L, Herold MJ, Schneider-Schaulies J.

J Virol. 2009 Sep;83(18):9423-31. doi: 10.1128/JVI.00846-09. Epub 2009 Jul 8.

27.

A small-molecule inhibitor of Nipah virus envelope protein-mediated membrane fusion.

Niedermeier S, Singethan K, Rohrer SG, Matz M, Kossner M, Diederich S, Maisner A, Schmitz J, Hiltensperger G, Baumann K, Holzgrabe U, Schneider-Schaulies J.

J Med Chem. 2009 Jul 23;52(14):4257-65. doi: 10.1021/jm900411s.

PMID:
19499921
28.

Measles virus-induced immunosuppression.

Schneider-Schaulies S, Schneider-Schaulies J.

Curr Top Microbiol Immunol. 2009;330:243-69. Review.

PMID:
19203113
29.

Measles virus-induced block of transendothelial migration of T lymphocytes and infection-mediated virus spread across endothelial cell barriers.

Dittmar S, Harms H, Runkler N, Maisner A, Kim KS, Schneider-Schaulies J.

J Virol. 2008 Nov;82(22):11273-82. doi: 10.1128/JVI.00775-08. Epub 2008 Sep 3.

30.

Receptor interactions, tropism, and mechanisms involved in morbillivirus-induced immunomodulation.

Schneider-Schaulies J, Schneider-Schaulies S.

Adv Virus Res. 2008;71:173-205. doi: 10.1016/S0065-3527(08)00004-3. Review.

PMID:
18585529
31.

CD9 clustering and formation of microvilli zippers between contacting cells regulates virus-induced cell fusion.

Singethan K, Müller N, Schubert S, Lüttge D, Krementsov DN, Khurana SR, Krohne G, Schneider-Schaulies S, Thali M, Schneider-Schaulies J.

Traffic. 2008 Jun;9(6):924-35. doi: 10.1111/j.1600-0854.2008.00737.x. Epub 2008 Mar 17.

32.

Two functionally linked amino acids in the stem 2 region of measles virus haemagglutinin determine infectivity and virulence in the rodent central nervous system.

Moeller-Ehrlich K, Ludlow M, Beschorner R, Meyermann R, Rima BK, Duprex WP, Niewiesk S, Schneider-Schaulies J.

J Gen Virol. 2007 Nov;88(Pt 11):3112-20.

PMID:
17947537
33.

Measles virus contact with T cells impedes cytoskeletal remodeling associated with spreading, polarization, and CD3 clustering.

Müller N, Avota E, Schneider-Schaulies J, Harms H, Krohne G, Schneider-Schaulies S.

Traffic. 2006 Jul;7(7):849-58.

34.

A mouse model of persistent brain infection with recombinant Measles virus.

Schubert S, Möller-Ehrlich K, Singethan K, Wiese S, Duprex WP, Rima BK, Niewiesk S, Schneider-Schaulies J.

J Gen Virol. 2006 Jul;87(Pt 7):2011-9.

PMID:
16760404
35.

RNA interference with measles virus N, P, and L mRNAs efficiently prevents and with matrix protein mRNA enhances viral transcription.

Reuter T, Weissbrich B, Schneider-Schaulies S, Schneider-Schaulies J.

J Virol. 2006 Jun;80(12):5951-7.

36.

CD9-dependent regulation of Canine distemper virus-induced cell-cell fusion segregates with the extracellular domain of the haemagglutinin.

Singethan K, Topfstedt E, Schubert S, Duprex WP, Rima BK, Schneider-Schaulies J.

J Gen Virol. 2006 Jun;87(Pt 6):1635-42.

PMID:
16690928
37.

Regulation of human endogenous retrovirus W protein expression by herpes simplex virus type 1: implications for multiple sclerosis.

Ruprecht K, Obojes K, Wengel V, Gronen F, Kim KS, Perron H, Schneider-Schaulies J, Rieckmann P.

J Neurovirol. 2006 Feb;12(1):65-71.

PMID:
16595376
38.

Indoleamine 2,3-dioxygenase mediates cell type-specific anti-measles virus activity of gamma interferon.

Obojes K, Andres O, Kim KS, Däubener W, Schneider-Schaulies J.

J Virol. 2005 Jun;79(12):7768-76.

39.

Probing neutralizing-antibody responses against emerging measles viruses (MVs): immune selection of MV by H protein-specific antibodies?

Santibanez S, Niewiesk S, Heider A, Schneider-Schaulies J, Berbers GA, Zimmermann A, Halenius A, Wolbert A, Deitemeier I, Tischer A, Hengel H.

J Gen Virol. 2005 Feb;86(Pt 2):365-74.

PMID:
15659756
40.

Expression of the interferon-alpha/beta-inducible MxA protein in brain lesions of subacute sclerosing panencephalitis.

Ogata S, Ogata A, Schneider-Schaulies S, Schneider-Schaulies J.

J Neurol Sci. 2004 Aug 30;223(2):113-9. Erratum in: J Neurol Sci. 2005 Jan 15;228(1):113. Schneider-Schaulies, Sybille [corrected to Schneider-Schaulies, Sibylle].

PMID:
15337611
41.

Measles infection of the central nervous system.

Schneider-Schaulies J, Meulen Vt, Schneider-Schaulies S.

J Neurovirol. 2003 Apr;9(2):247-52. Review.

PMID:
12707855
42.

CD46- and CD150-independent endothelial cell infection with wild-type measles viruses.

Andres O, Obojes K, Kim KS, ter Meulen V, Schneider-Schaulies J.

J Gen Virol. 2003 May;84(Pt 5):1189-97.

PMID:
12692284
43.
44.

Measles virus: immunomodulation and cell tropism as pathogenicity determinants.

Schneider-Schaulies S, Schneider-Schaulies J, Niewiesk S, Ter Meulen V.

Med Microbiol Immunol. 2002 Oct;191(2):83-7. Epub 2002 Aug 17. Review.

PMID:
12410346
45.

Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling.

Bieback K, Lien E, Klagge IM, Avota E, Schneider-Schaulies J, Duprex WP, Wagner H, Kirschning CJ, Ter Meulen V, Schneider-Schaulies S.

J Virol. 2002 Sep;76(17):8729-36.

46.

Analysis of receptor (CD46, CD150) usage by measles virus.

Erlenhöfer C, Duprex WP, Rima BK, Ter Meulen V, Schneider-Schaulies J.

J Gen Virol. 2002 Jun;83(Pt 6):1431-1436. doi: 10.1099/0022-1317-83-6-1431.

PMID:
12029158
47.

Measles virus induced immunosuppression: targets and effector mechanisms.

Schneider-Schaulies S, Niewiesk S, Schneider-Schaulies J, ter Meulen V.

Curr Mol Med. 2001 May;1(2):163-81. Review.

PMID:
11899069
48.

Measles virus interactions with cellular receptors: consequences for viral pathogenesis.

Schneider-Schaulies J, ter Meulen V, Schneider-Schaulies S.

J Neurovirol. 2001 Oct;7(5):391-9. Review.

PMID:
11582511
49.

Recombinant measles viruses expressing altered hemagglutinin (H) genes: functional separation of mutations determining H antibody escape from neurovirulence.

Moeller K, Duffy I, Duprex P, Rima B, Beschorner R, Fauser S, Meyermann R, Niewiesk S, ter Meulen V, Schneider-Schaulies J.

J Virol. 2001 Aug;75(16):7612-20.

50.

The haemagglutinin protein is an important determinant of measles virus tropism for dendritic cells in vitro.

Ohgimoto S, Ohgimoto K, Niewiesk S, Klagge IM, Pfeuffer J, Johnston ICD, Schneider-Schaulies J, Weidmann A, Ter Meulen V, Schneider-Schaulies S.

J Gen Virol. 2001 Aug;82(Pt 8):1835-1844. doi: 10.1099/0022-1317-82-8-1835.

PMID:
11457989

Supplemental Content

Loading ...
Support Center