Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 95

1.

Large-scale chemical-genetics yields new M. tuberculosis inhibitor classes.

Johnson EO, LaVerriere E, Office E, Stanley M, Meyer E, Kawate T, Gomez JE, Audette RE, Bandyopadhyay N, Betancourt N, Delano K, Da Silva I, Davis J, Gallo C, Gardner M, Golas AJ, Guinn KM, Kennedy S, Korn R, McConnell JA, Moss CE, Murphy KC, Nietupski RM, Papavinasasundaram KG, Pinkham JT, Pino PA, Proulx MK, Ruecker N, Song N, Thompson M, Trujillo C, Wakabayashi S, Wallach JB, Watson C, Ioerger TR, Lander ES, Hubbard BK, Serrano-Wu MH, Ehrt S, Fitzgerald M, Rubin EJ, Sassetti CM, Schnappinger D, Hung DT.

Nature. 2019 Jul;571(7763):72-78. doi: 10.1038/s41586-019-1315-z. Epub 2019 Jun 19.

PMID:
31217586
2.

An NAD+ Phosphorylase Toxin Triggers Mycobacterium tuberculosis Cell Death.

Freire DM, Gutierrez C, Garza-Garcia A, Grabowska AD, Sala AJ, Ariyachaokun K, Panikova T, Beckham KSH, Colom A, Pogenberg V, Cianci M, Tuukkanen A, Boudehen YM, Peixoto A, Botella L, Svergun DI, Schnappinger D, Schneider TR, Genevaux P, de Carvalho LPS, Wilmanns M, Parret AHA, Neyrolles O.

Mol Cell. 2019 Mar 21;73(6):1282-1291.e8. doi: 10.1016/j.molcel.2019.01.028. Epub 2019 Feb 18.

3.

Opposing reactions in coenzyme A metabolism sensitize Mycobacterium tuberculosis to enzyme inhibition.

Ballinger E, Mosior J, Hartman T, Burns-Huang K, Gold B, Morris R, Goullieux L, Blanc I, Vaubourgeix J, Lagrange S, Fraisse L, Sans S, Couturier C, Bacqué E, Rhee K, Scarry SM, Aubé J, Yang G, Ouerfelli O, Schnappinger D, Ioerger TR, Engelhart CA, McConnell JA, McAulay K, Fay A, Roubert C, Sacchettini J, Nathan C.

Science. 2019 Feb 1;363(6426). pii: eaau8959. doi: 10.1126/science.aau8959. Erratum in: Science. 2019 Jun 21;364(6446):.

4.

Investigation of ( S)-(-)-Acidomycin: A Selective Antimycobacterial Natural Product That Inhibits Biotin Synthase.

Bockman MR, Engelhart CA, Cramer JD, Howe MD, Mishra NK, Zimmerman M, Larson P, Alvarez-Cabrera N, Park SW, Boshoff HIM, Bean JM, Young VG Jr, Ferguson DM, Dartois V, Jarrett JT, Schnappinger D, Aldrich CC.

ACS Infect Dis. 2019 Apr 12;5(4):598-617. doi: 10.1021/acsinfecdis.8b00345. Epub 2019 Feb 4.

PMID:
30652474
5.

Identification of Enolase as the Target of 2-Aminothiazoles in Mycobacterium tuberculosis.

Wescott HH, Zuniga ES, Bajpai A, Trujillo C, Ehrt S, Schnappinger D, Roberts DM, Parish T.

Front Microbiol. 2018 Oct 26;9:2542. doi: 10.3389/fmicb.2018.02542. eCollection 2018.

6.

Discovery and Structure-Activity-Relationship Study of N-Alkyl-5-hydroxypyrimidinone Carboxamides as Novel Antitubercular Agents Targeting Decaprenylphosphoryl-β-d-ribose 2'-Oxidase.

Oh S, Park Y, Engelhart CA, Wallach JB, Schnappinger D, Arora K, Manikkam M, Gac B, Wang H, Murgolo N, Olsen DB, Goodwin M, Sutphin M, Weiner DM, Via LE, Boshoff HIM, Barry CE 3rd.

J Med Chem. 2018 Nov 21;61(22):9952-9965. doi: 10.1021/acs.jmedchem.8b00883. Epub 2018 Nov 5.

7.

Targeting protein biotinylation enhances tuberculosis chemotherapy.

Tiwari D, Park SW, Essawy MM, Dawadi S, Mason A, Nandakumar M, Zimmerman M, Mina M, Ho HP, Engelhart CA, Ioerger T, Sacchettini JC, Rhee K, Ehrt S, Aldrich CC, Dartois V, Schnappinger D.

Sci Transl Med. 2018 Apr 25;10(438). pii: eaal1803. doi: 10.1126/scitranslmed.aal1803.

8.

Metabolic principles of persistence and pathogenicity in Mycobacterium tuberculosis.

Ehrt S, Schnappinger D, Rhee KY.

Nat Rev Microbiol. 2018 Aug;16(8):496-507. doi: 10.1038/s41579-018-0013-4. Review.

9.

Conformationally Constrained Cinnolinone Nucleoside Analogues as Siderophore Biosynthesis Inhibitors for Tuberculosis.

Dawadi S, Boshoff HIM, Park SW, Schnappinger D, Aldrich CC.

ACS Med Chem Lett. 2018 Mar 16;9(4):386-391. doi: 10.1021/acsmedchemlett.8b00090. eCollection 2018 Apr 12.

10.

Avoiding Antibiotic Inactivation in Mycobacterium tuberculosis by Rv3406 through Strategic Nucleoside Modification.

Bockman MR, Engelhart CA, Dawadi S, Larson P, Tiwari D, Ferguson DM, Schnappinger D, Aldrich CC.

ACS Infect Dis. 2018 Jul 13;4(7):1102-1113. doi: 10.1021/acsinfecdis.8b00038. Epub 2018 Apr 17.

PMID:
29663798
11.

Critical Impact of Peptidoglycan Precursor Amidation on the Activity of l,d-Transpeptidases from Enterococcus faecium and Mycobacterium tuberculosis.

Ngadjeua F, Braud E, Saidjalolov S, Iannazzo L, Schnappinger D, Ehrt S, Hugonnet JE, Mengin-Lecreulx D, Patin D, Ethève-Quelquejeu M, Fonvielle M, Arthur M.

Chemistry. 2018 Apr 17;24(22):5743-5747. doi: 10.1002/chem.201706082. Epub 2018 Feb 21.

PMID:
29389045
12.

Chemical Genetic Interaction Profiling Reveals Determinants of Intrinsic Antibiotic Resistance in Mycobacterium tuberculosis.

Xu W, DeJesus MA, Rücker N, Engelhart CA, Wright MG, Healy C, Lin K, Wang R, Park SW, Ioerger TR, Schnappinger D, Ehrt S.

Antimicrob Agents Chemother. 2017 Nov 22;61(12). pii: e01334-17. doi: 10.1128/AAC.01334-17. Print 2017 Dec.

13.

Structure-Based Optimization of Pyridoxal 5'-Phosphate-Dependent Transaminase Enzyme (BioA) Inhibitors that Target Biotin Biosynthesis in Mycobacterium tuberculosis.

Liu F, Dawadi S, Maize KM, Dai R, Park SW, Schnappinger D, Finzel BC, Aldrich CC.

J Med Chem. 2017 Jul 13;60(13):5507-5520. doi: 10.1021/acs.jmedchem.7b00189. Epub 2017 Jun 22.

14.

Depleting Mycobacterium tuberculosis of the transcription termination factor Rho causes pervasive transcription and rapid death.

Botella L, Vaubourgeix J, Livny J, Schnappinger D.

Nat Commun. 2017 Mar 28;8:14731. doi: 10.1038/ncomms14731.

15.

Glyoxylate detoxification is an essential function of malate synthase required for carbon assimilation in Mycobacterium tuberculosis.

Puckett S, Trujillo C, Wang Z, Eoh H, Ioerger TR, Krieger I, Sacchettini J, Schnappinger D, Rhee KY, Ehrt S.

Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):E2225-E2232. doi: 10.1073/pnas.1617655114. Epub 2017 Mar 6.

16.

Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform.

Rock JM, Hopkins FF, Chavez A, Diallo M, Chase MR, Gerrick ER, Pritchard JR, Church GM, Rubin EJ, Sassetti CM, Schnappinger D, Fortune SM.

Nat Microbiol. 2017 Feb 6;2:16274. doi: 10.1038/nmicrobiol.2016.274.

17.

Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis.

DeJesus MA, Gerrick ER, Xu W, Park SW, Long JE, Boutte CC, Rubin EJ, Schnappinger D, Ehrt S, Fortune SM, Sassetti CM, Ioerger TR.

MBio. 2017 Jan 17;8(1). pii: e02133-16. doi: 10.1128/mBio.02133-16.

18.

A broader spectrum of tuberculosis.

Schnappinger D, Ehrt S.

Nat Med. 2016 Oct 6;22(10):1076-1077. doi: 10.1038/nm.4186. No abstract available.

PMID:
27711059
19.

Validation of CoaBC as a Bactericidal Target in the Coenzyme A Pathway of Mycobacterium tuberculosis.

Evans JC, Trujillo C, Wang Z, Eoh H, Ehrt S, Schnappinger D, Boshoff HI, Rhee KY, Barry CE 3rd, Mizrahi V.

ACS Infect Dis. 2016 Dec 9;2(12):958-968. Epub 2016 Oct 5.

20.

Therapeutic Potential of the Mycobacterium tuberculosis Mycolic Acid Transporter, MmpL3.

Li W, Obregón-Henao A, Wallach JB, North EJ, Lee RE, Gonzalez-Juarrero M, Schnappinger D, Jackson M.

Antimicrob Agents Chemother. 2016 Aug 22;60(9):5198-207. doi: 10.1128/AAC.00826-16. Print 2016 Sep.

21.

Mycobacterium tuberculosis Thioredoxin Reductase Is Essential for Thiol Redox Homeostasis but Plays a Minor Role in Antioxidant Defense.

Lin K, O'Brien KM, Trujillo C, Wang R, Wallach JB, Schnappinger D, Ehrt S.

PLoS Pathog. 2016 Jun 1;12(6):e1005675. doi: 10.1371/journal.ppat.1005675. eCollection 2016 Jun.

22.

Reconstruction and topological characterization of the sigma factor regulatory network of Mycobacterium tuberculosis.

Chauhan R, Ravi J, Datta P, Chen T, Schnappinger D, Bassler KE, Balázsi G, Gennaro ML.

Nat Commun. 2016 Mar 31;7:11062. doi: 10.1038/ncomms11062.

23.

Targeting Mycobacterium tuberculosis Biotin Protein Ligase (MtBPL) with Nucleoside-Based Bisubstrate Adenylation Inhibitors.

Bockman MR, Kalinda AS, Petrelli R, De la Mora-Rey T, Tiwari D, Liu F, Dawadi S, Nandakumar M, Rhee KY, Schnappinger D, Finzel BC, Aldrich CC.

J Med Chem. 2015 Sep 24;58(18):7349-7369. doi: 10.1021/acs.jmedchem.5b00719. Epub 2015 Sep 3.

24.

Fragment-based exploration of binding site flexibility in Mycobacterium tuberculosis BioA.

Dai R, Geders TW, Liu F, Park SW, Schnappinger D, Aldrich CC, Finzel BC.

J Med Chem. 2015 Jul 9;58(13):5208-17. doi: 10.1021/acs.jmedchem.5b00092. Epub 2015 Jun 24.

25.

Discovery of small molecule probe that shows anti-tubercular activity via Mtb bioA (DAPA synthase) enzyme inhibition.

Casalena D, Nag PP, Park SW, Wilson D, Edwankar R, Johnston S, Le H, Schilling R, Bittker JA, Dandapani S, Munoz B, Dai R, Finzel BC, Schnappinger D, Aldrich C, Schreiber SL, Palmer M.

Probe Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2010-.
2014 Apr 15 [updated 2015 Jan 16].

26.

Construction of conditional knockdown mutants in mycobacteria.

Schnappinger D, O'Brien KM, Ehrt S.

Methods Mol Biol. 2015;1285:151-75. doi: 10.1007/978-1-4939-2450-9_9.

PMID:
25779315
27.

Mycobacterial genes essential for the pathogen's survival in the host.

Ehrt S, Rhee K, Schnappinger D.

Immunol Rev. 2015 Mar;264(1):319-26. doi: 10.1111/imr.12256. Review.

28.

Genetic Approaches to Facilitate Antibacterial Drug Development.

Schnappinger D.

Cold Spring Harb Perspect Med. 2015 Feb 13;5(7):a021139. doi: 10.1101/cshperspect.a021139. Review.

29.

Disruption of an M. tuberculosis membrane protein causes a magnesium-dependent cell division defect and failure to persist in mice.

Goodsmith N, Guo XV, Vandal OH, Vaubourgeix J, Wang R, Botella H, Song S, Bhatt K, Liba A, Salgame P, Schnappinger D, Ehrt S.

PLoS Pathog. 2015 Feb 6;11(2):e1004645. doi: 10.1371/journal.ppat.1004645. eCollection 2015 Feb.

30.

Stressed mycobacteria use the chaperone ClpB to sequester irreversibly oxidized proteins asymmetrically within and between cells.

Vaubourgeix J, Lin G, Dhar N, Chenouard N, Jiang X, Botella H, Lupoli T, Mariani O, Yang G, Ouerfelli O, Unser M, Schnappinger D, McKinney J, Nathan C.

Cell Host Microbe. 2015 Feb 11;17(2):178-90. doi: 10.1016/j.chom.2014.12.008. Epub 2015 Jan 22.

31.

Target-based identification of whole-cell active inhibitors of biotin biosynthesis in Mycobacterium tuberculosis.

Park SW, Casalena DE, Wilson DJ, Dai R, Nag PP, Liu F, Boyce JP, Bittker JA, Schreiber SL, Finzel BC, Schnappinger D, Aldrich CC.

Chem Biol. 2015 Jan 22;22(1):76-86. doi: 10.1016/j.chembiol.2014.11.012. Epub 2014 Dec 31.

32.

Regulated Expression Systems for Mycobacteria and Their Applications.

Schnappinger D, Ehrt S.

Microbiol Spectr. 2014;2(1). pii: 03.

33.

Inactivation of fructose-1,6-bisphosphate aldolase prevents optimal co-catabolism of glycolytic and gluconeogenic carbon substrates in Mycobacterium tuberculosis.

Puckett S, Trujillo C, Eoh H, Marrero J, Spencer J, Jackson M, Schnappinger D, Rhee K, Ehrt S.

PLoS Pathog. 2014 May 22;10(5):e1004144. doi: 10.1371/journal.ppat.1004144. eCollection 2014 May.

34.

Triosephosphate isomerase is dispensable in vitro yet essential for Mycobacterium tuberculosis to establish infection.

Trujillo C, Blumenthal A, Marrero J, Rhee KY, Schnappinger D, Ehrt S.

MBio. 2014 Apr 22;5(2):e00085. doi: 10.1128/mBio.00085-14.

35.

Post-translational regulation via Clp protease is critical for survival of Mycobacterium tuberculosis.

Raju RM, Jedrychowski MP, Wei JR, Pinkham JT, Park AS, O'Brien K, Rehren G, Schnappinger D, Gygi SP, Rubin EJ.

PLoS Pathog. 2014 Mar 6;10(3):e1003994. doi: 10.1371/journal.ppat.1003994. eCollection 2014 Mar.

36.

Mycobacterium tuberculosis exploits asparagine to assimilate nitrogen and resist acid stress during infection.

Gouzy A, Larrouy-Maumus G, Bottai D, Levillain F, Dumas A, Wallach JB, Caire-Brandli I, de Chastellier C, Wu TD, Poincloux R, Brosch R, Guerquin-Kern JL, Schnappinger D, Sório de Carvalho LP, Poquet Y, Neyrolles O.

PLoS Pathog. 2014 Feb 20;10(2):e1003928. doi: 10.1371/journal.ppat.1003928. eCollection 2014 Feb.

37.

Regulated Expression Systems for Mycobacteria and Their Applications.

Schnappinger D, Ehrt S.

Microbiol Spectr. 2014 Feb;2(1):MGM2-0018-2013. doi: 10.1128/microbiolspec.MGM2-0018-2013. Review.

PMID:
26082123
38.

Bisubstrate Inhibitors of Biotin Protein Ligase in Mycobacterium tuberculosis Resistant to Cyclonucleoside Formation.

Shi C, Tiwari D, Wilson DJ, Seiler CL, Schnappinger D, Aldrich CC.

ACS Med Chem Lett. 2013 Dec 12;4(12). doi: 10.1021/ml400328a.

39.

A genetic strategy to identify targets for the development of drugs that prevent bacterial persistence.

Kim JH, O'Brien KM, Sharma R, Boshoff HI, Rehren G, Chakraborty S, Wallach JB, Monteleone M, Wilson DJ, Aldrich CC, Barry CE 3rd, Rhee KY, Ehrt S, Schnappinger D.

Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):19095-100. doi: 10.1073/pnas.1315860110. Epub 2013 Nov 4.

40.

Database resources for the tuberculosis community.

Lew JM, Mao C, Shukla M, Warren A, Will R, Kuznetsov D, Xenarios I, Robertson BD, Gordon SV, Schnappinger D, Cole ST, Sobral B.

Tuberculosis (Edinb). 2013 Jan;93(1):12-7. doi: 10.1016/j.tube.2012.11.003. Epub 2013 Jan 17. Review.

41.

Detection and treatment of subclinical tuberculosis.

Robertson BD, Altmann D, Barry C, Bishai B, Cole S, Dick T, Duncan K, Dye C, Ehrt S, Esmail H, Flynn J, Hafner R, Handley G, Hanekom W, van Helden P, Kaplan G, Kaufmann SH, Kim P, Lienhardt C, Mizrahi V, Rubin E, Schnappinger D, Sherman D, Thole J, Vandal O, Walzl G, Warner D, Wilkinson R, Young D.

Tuberculosis (Edinb). 2012 Nov;92(6):447-52. doi: 10.1016/j.tube.2012.06.004. Epub 2012 Jul 21.

42.

Bisubstrate adenylation inhibitors of biotin protein ligase from Mycobacterium tuberculosis.

Duckworth BP, Geders TW, Tiwari D, Boshoff HI, Sibbald PA, Barry CE 3rd, Schnappinger D, Finzel BC, Aldrich CC.

Chem Biol. 2011 Nov 23;18(11):1432-41. doi: 10.1016/j.chembiol.2011.08.013.

43.

Mechanism-based inactivation by aromatization of the transaminase BioA involved in biotin biosynthesis in Mycobaterium tuberculosis.

Shi C, Geders TW, Park SW, Wilson DJ, Boshoff HI, Abayomi O, Barry CE 3rd, Schnappinger D, Finzel BC, Aldrich CC.

J Am Chem Soc. 2011 Nov 16;133(45):18194-201. doi: 10.1021/ja204036t. Epub 2011 Oct 24.

44.

Evaluating the sensitivity of Mycobacterium tuberculosis to biotin deprivation using regulated gene expression.

Woong Park S, Klotzsche M, Wilson DJ, Boshoff HI, Eoh H, Manjunatha U, Blumenthal A, Rhee K, Barry CE 3rd, Aldrich CC, Ehrt S, Schnappinger D.

PLoS Pathog. 2011 Sep;7(9):e1002264. doi: 10.1371/journal.ppat.1002264. Epub 2011 Sep 29.

45.

Glycolytic and non-glycolytic functions of Mycobacterium tuberculosis fructose-1,6-bisphosphate aldolase, an essential enzyme produced by replicating and non-replicating bacilli.

de la Paz Santangelo M, Gest PM, Guerin ME, Coinçon M, Pham H, Ryan G, Puckett SE, Spencer JS, Gonzalez-Juarrero M, Daher R, Lenaerts AJ, Schnappinger D, Therisod M, Ehrt S, Sygusch J, Jackson M.

J Biol Chem. 2011 Nov 18;286(46):40219-31. doi: 10.1074/jbc.M111.259440. Epub 2011 Sep 23.

46.

The Mycobacterium tuberculosis β-oxidation genes echA5 and fadB3 are dispensable for growth in vitro and in vivo.

Williams KJ, Boshoff HI, Krishnan N, Gonzales J, Schnappinger D, Robertson BD.

Tuberculosis (Edinb). 2011 Nov;91(6):549-55. doi: 10.1016/j.tube.2011.06.006. Epub 2011 Jul 18.

47.

Central carbon metabolism in Mycobacterium tuberculosis: an unexpected frontier.

Rhee KY, de Carvalho LP, Bryk R, Ehrt S, Marrero J, Park SW, Schnappinger D, Venugopal A, Nathan C.

Trends Microbiol. 2011 Jul;19(7):307-14. doi: 10.1016/j.tim.2011.03.008. Epub 2011 May 10.

48.

Depletion of antibiotic targets has widely varying effects on growth.

Wei JR, Krishnamoorthy V, Murphy K, Kim JH, Schnappinger D, Alber T, Sassetti CM, Rhee KY, Rubin EJ.

Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4176-81. doi: 10.1073/pnas.1018301108. Epub 2011 Feb 22.

49.

Virulence of Mycobacterium tuberculosis depends on lipoamide dehydrogenase, a member of three multienzyme complexes.

Venugopal A, Bryk R, Shi S, Rhee K, Rath P, Schnappinger D, Ehrt S, Nathan C.

Cell Host Microbe. 2011 Jan 20;9(1):21-31. doi: 10.1016/j.chom.2010.12.004.

50.

Simultaneous analysis of multiple Mycobacterium tuberculosis knockdown mutants in vitro and in vivo.

Blumenthal A, Trujillo C, Ehrt S, Schnappinger D.

PLoS One. 2010 Dec 22;5(12):e15667. doi: 10.1371/journal.pone.0015667.

Supplemental Content

Loading ...
Support Center