Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 34

1.

Endogenous Stochastic Decoding of the CUG Codon by Competing Ser- and Leu-tRNAs in Ascoidea asiatica.

Mühlhausen S, Schmitt HD, Pan KT, Plessmann U, Urlaub H, Hurst LD, Kollmar M.

Curr Biol. 2018 Jul 9;28(13):2046-2057.e5. doi: 10.1016/j.cub.2018.04.085. Epub 2018 Jun 18.

2.

Corrigendum: Coat/Tether Interactions-Exception or Rule?

Schröter S, Beckmann S, Schmitt HD.

Front Cell Dev Biol. 2016 Aug 30;4:90. doi: 10.3389/fcell.2016.00090. eCollection 2016.

3.

ER arrival sites for COPI vesicles localize to hotspots of membrane trafficking.

Schröter S, Beckmann S, Schmitt HD.

EMBO J. 2016 Sep 1;35(17):1935-55. doi: 10.15252/embj.201592873. Epub 2016 Jul 20.

4.

Coat/Tether Interactions-Exception or Rule?

Schroeter S, Beckmann S, Schmitt HD.

Front Cell Dev Biol. 2016 May 17;4:44. doi: 10.3389/fcell.2016.00044. eCollection 2016. Review. Erratum in: Front Cell Dev Biol. 2016;4:90.

5.

The Dsl1 protein tethering complex is a resident endoplasmic reticulum complex, which interacts with five soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptors (SNAREs): implications for fusion and fusion regulation.

Meiringer CT, Rethmeier R, Auffarth K, Wilson J, Perz A, Barlowe C, Schmitt HD, Ungermann C.

J Biol Chem. 2011 Jul 15;286(28):25039-46. doi: 10.1074/jbc.M110.215327. Epub 2011 May 6.

6.

Dsl1p/Zw10: common mechanisms behind tethering vesicles and microtubules.

Schmitt HD.

Trends Cell Biol. 2010 May;20(5):257-68. doi: 10.1016/j.tcb.2010.02.001. Epub 2010 Mar 11. Review.

PMID:
20226673
7.

A tethering complex recruits SNAREs and grabs vesicles.

Schmitt HD, Jahn R.

Cell. 2009 Dec 11;139(6):1053-5. doi: 10.1016/j.cell.2009.11.041.

8.

A link between ER tethering and COP-I vesicle uncoating.

Zink S, Wenzel D, Wurm CA, Schmitt HD.

Dev Cell. 2009 Sep;17(3):403-16. doi: 10.1016/j.devcel.2009.07.012.

9.

The GET complex mediates insertion of tail-anchored proteins into the ER membrane.

Schuldiner M, Metz J, Schmid V, Denic V, Rakwalska M, Schmitt HD, Schwappach B, Weissman JS.

Cell. 2008 Aug 22;134(4):634-45. doi: 10.1016/j.cell.2008.06.025.

10.

Mutations of the SM protein Sly1 resulting in bypass of GTPase requirement in vesicular transport are confined to a short helical region.

Li Y, Schmitt HD, Gallwitz D, Peng RW.

FEBS Lett. 2007 Dec 11;581(29):5698-702. Epub 2007 Nov 26.

11.

Dsl1p, Tip20p, and the novel Dsl3(Sec39) protein are required for the stability of the Q/t-SNARE complex at the endoplasmic reticulum in yeast.

Kraynack BA, Chan A, Rosenthal E, Essid M, Umansky B, Waters MG, Schmitt HD.

Mol Biol Cell. 2005 Sep;16(9):3963-77. Epub 2005 Jun 15. Erratum in: Mol Biol Cell. 2006 Jun;17(6):2853.

12.

Identification of functionally interacting SNAREs by using complementary substitutions in the conserved '0' layer.

Graf CT, Riedel D, Schmitt HD, Jahn R.

Mol Biol Cell. 2005 May;16(5):2263-74. Epub 2005 Feb 23.

14.

Use1p is a yeast SNARE protein required for retrograde traffic to the ER.

Dilcher M, Veith B, Chidambaram S, Hartmann E, Schmitt HD, Fischer von Mollard G.

EMBO J. 2003 Jul 15;22(14):3664-74.

15.

ARF-GAP-mediated interaction between the ER-Golgi v-SNAREs and the COPI coat.

Rein U, Andag U, Duden R, Schmitt HD, Spang A.

J Cell Biol. 2002 Apr 29;157(3):395-404. Epub 2002 Apr 22.

16.

The coatomer-interacting protein Dsl1p is required for Golgi-to-endoplasmic reticulum retrieval in yeast.

Andag U, Neumann T, Schmitt HD.

J Biol Chem. 2001 Oct 19;276(42):39150-60. Epub 2001 Aug 7.

17.

Exocytosis requires asymmetry in the central layer of the SNARE complex.

Ossig R, Schmitt HD, de Groot B, Riedel D, Keränen S, Ronne H, Grubmüller H, Jahn R.

EMBO J. 2000 Nov 15;19(22):6000-10.

18.

Yeast ER-Golgi v-SNAREs Bos1p and Bet1p differ in steady-state localization and targeting.

Ossipov D, Schröder-Köhne S, Schmitt HD.

J Cell Sci. 1999 Nov;112 ( Pt 22):4135-42.

19.

Functional implications of genetic interactions between genes encoding small GTPases involved in vesicular transport in yeast.

Yoo JS, Grabowski R, Xing L, Trepte HH, Schmitt HD, Gallwitz D.

Mol Gen Genet. 1999 Feb;261(1):80-91.

PMID:
10071213
20.

Recycling of the yeast v-SNARE Sec22p involves COPI-proteins and the ER transmembrane proteins Ufe1p and Sec20p.

Ballensiefen W, Ossipov D, Schmitt HD.

J Cell Sci. 1998 Jun;111 ( Pt 11):1507-20.

21.

Human Rer1 is localized to the Golgi apparatus and complements the deletion of the homologous Rer1 protein of Saccharomyces cerevisiae.

Füllekrug J, Boehm J, Röttger S, Nilsson T, Mieskes G, Schmitt HD.

Eur J Cell Biol. 1997 Sep;74(1):31-40.

PMID:
9309388
22.
23.

Sec12p requires Rer1p for sorting to coatomer (COPI)-coated vesicles and retrieval to the ER.

Boehm J, Letourneur F, Ballensiefen W, Ossipov D, Démollière C, Schmitt HD.

J Cell Sci. 1997 Apr;110 ( Pt 8):991-1003.

24.

Assembly of the ER to Golgi SNARE complex requires Uso1p.

Sapperstein SK, Lupashin VV, Schmitt HD, Waters MG.

J Cell Biol. 1996 Mar;132(5):755-67.

27.
28.
30.

Biochemical properties of the ras-related YPT protein in yeast: a mutational analysis.

Wagner P, Molenaar CM, Rauh AJ, Brökel R, Schmitt HD, Gallwitz D.

EMBO J. 1987 Aug;6(8):2373-9.

31.
33.

The synthesis of yeast pyruvate decarboxylase is regulated by large variations in the messenger RNA level.

Schmitt HD, Ciriacy M, Zimmermann FK.

Mol Gen Genet. 1983;192(1-2):247-52.

PMID:
6358796
34.

Genetic analysis of the pyruvate decarboxylase reaction in yeast glycolysis.

Schmitt HD, Zimmermann FK.

J Bacteriol. 1982 Sep;151(3):1146-52.

Supplemental Content

Loading ...
Support Center