Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 157

1.

TET enzymes augment activation-induced deaminase (AID) expression via 5-hydroxymethylcytosine modifications at the Aicda superenhancer.

Lio CJ, Shukla V, Samaniego-Castruita D, González-Avalos E, Chakraborty A, Yue X, Schatz DG, Ay F, Rao A.

Sci Immunol. 2019 Apr 26;4(34). pii: eaau7523. doi: 10.1126/sciimmunol.aau7523.

PMID:
31028100
2.

Transposon molecular domestication and the evolution of the RAG recombinase.

Zhang Y, Cheng TC, Huang G, Lu Q, Surleac MD, Mandell JD, Pontarotti P, Petrescu AJ, Xu A, Xiong Y, Schatz DG.

Nature. 2019 May;569(7754):79-84. doi: 10.1038/s41586-019-1093-7. Epub 2019 Apr 10.

PMID:
30971819
3.

DNA melting initiates the RAG catalytic pathway.

Ru H, Mi W, Zhang P, Alt FW, Schatz DG, Liao M, Wu H.

Nat Struct Mol Biol. 2018 Aug;25(8):732-742. doi: 10.1038/s41594-018-0098-5. Epub 2018 Jul 30.

4.

Immature Lymphocytes Inhibit Rag1 and Rag2 Transcription and V(D)J Recombination in Response to DNA Double-Strand Breaks.

Fisher MR, Rivera-Reyes A, Bloch NB, Schatz DG, Bassing CH.

J Immunol. 2017 Apr 1;198(7):2943-2956. doi: 10.4049/jimmunol.1601639. Epub 2017 Feb 17.

5.

New insights into the evolutionary origins of the recombination-activating gene proteins and V(D)J recombination.

Carmona LM, Schatz DG.

FEBS J. 2017 Jun;284(11):1590-1605. doi: 10.1111/febs.13990. Epub 2017 Jan 6. Review.

6.

RAG1 targeting in the genome is dominated by chromatin interactions mediated by the non-core regions of RAG1 and RAG2.

Maman Y, Teng G, Seth R, Kleinstein SH, Schatz DG.

Nucleic Acids Res. 2016 Nov 16;44(20):9624-9637. Epub 2016 Jul 19.

7.

Modeling altered T-cell development with induced pluripotent stem cells from patients with RAG1-dependent immune deficiencies.

Brauer PM, Pessach IM, Clarke E, Rowe JH, Ott de Bruin L, Lee YN, Dominguez-Brauer C, Comeau AM, Awong G, Felgentreff K, Zhang YH, Bredemeyer A, Al-Herz W, Du L, Ververs F, Kennedy M, Giliani S, Keller G, Sleckman BP, Schatz DG, Bushman FD, Notarangelo LD, Zúñiga-Pflücker JC.

Blood. 2016 Aug 11;128(6):783-93. doi: 10.1182/blood-2015-10-676304. Epub 2016 Jun 14.

8.

Discovery of an Active RAG Transposon Illuminates the Origins of V(D)J Recombination.

Huang S, Tao X, Yuan S, Zhang Y, Li P, Beilinson HA, Zhang Y, Yu W, Pontarotti P, Escriva H, Le Petillon Y, Liu X, Chen S, Schatz DG, Xu A.

Cell. 2016 Jun 30;166(1):102-14. doi: 10.1016/j.cell.2016.05.032. Epub 2016 Jun 9.

9.

Collaboration of RAG2 with RAG1-like proteins during the evolution of V(D)J recombination.

Carmona LM, Fugmann SD, Schatz DG.

Genes Dev. 2016 Apr 15;30(8):909-17. doi: 10.1101/gad.278432.116. Epub 2016 Apr 7.

10.

Bcl6 Is Required for Somatic Hypermutation and Gene Conversion in Chicken DT40 Cells.

Williams AM, Maman Y, Alinikula J, Schatz DG.

PLoS One. 2016 Feb 22;11(2):e0149146. doi: 10.1371/journal.pone.0149146. eCollection 2016.

11.

Chromosomal Loop Domains Direct the Recombination of Antigen Receptor Genes.

Hu J, Zhang Y, Zhao L, Frock RL, Du Z, Meyers RM, Meng FL, Schatz DG, Alt FW.

Cell. 2015 Nov 5;163(4):947-59. doi: 10.1016/j.cell.2015.10.016. Epub 2015 Oct 22.

12.

Regulation and Evolution of the RAG Recombinase.

Teng G, Schatz DG.

Adv Immunol. 2015;128:1-39. doi: 10.1016/bs.ai.2015.07.002. Epub 2015 Aug 4. Review.

PMID:
26477364
13.

Recruitment of RAG1 and RAG2 to Chromatinized DNA during V(D)J Recombination.

Shetty K, Schatz DG.

Mol Cell Biol. 2015 Nov;35(21):3701-13. doi: 10.1128/MCB.00219-15. Epub 2015 Aug 24.

14.

Histone reader BRWD1 targets and restricts recombination to the Igk locus.

Mandal M, Hamel KM, Maienschein-Cline M, Tanaka A, Teng G, Tuteja JH, Bunker JJ, Bahroos N, Eppig JJ, Schatz DG, Clark MR.

Nat Immunol. 2015 Oct;16(10):1094-103. doi: 10.1038/ni.3249. Epub 2015 Aug 24.

15.

RAG Represents a Widespread Threat to the Lymphocyte Genome.

Teng G, Maman Y, Resch W, Kim M, Yamane A, Qian J, Kieffer-Kwon KR, Mandal M, Ji Y, Meffre E, Clark MR, Cowell LG, Casellas R, Schatz DG.

Cell. 2015 Aug 13;162(4):751-65. doi: 10.1016/j.cell.2015.07.009. Epub 2015 Jul 30.

16.

Genomic landscape of cutaneous T cell lymphoma.

Choi J, Goh G, Walradt T, Hong BS, Bunick CG, Chen K, Bjornson RD, Maman Y, Wang T, Tordoff J, Carlson K, Overton JD, Liu KJ, Lewis JM, Devine L, Barbarotta L, Foss FM, Subtil A, Vonderheid EC, Edelson RL, Schatz DG, Boggon TJ, Girardi M, Lifton RP.

Nat Genet. 2015 Sep;47(9):1011-9. doi: 10.1038/ng.3356. Epub 2015 Jul 20.

17.

Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia.

Swaminathan S, Klemm L, Park E, Papaemmanuil E, Ford A, Kweon SM, Trageser D, Hasselfeld B, Henke N, Mooster J, Geng H, Schwarz K, Kogan SC, Casellas R, Schatz DG, Lieber MR, Greaves MF, Müschen M.

Nat Immunol. 2015 Jul;16(7):766-774. doi: 10.1038/ni.3160. Epub 2015 May 18.

18.

Single-molecule analysis of RAG-mediated V(D)J DNA cleavage.

Lovely GA, Brewster RC, Schatz DG, Baltimore D, Phillips R.

Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):E1715-23. doi: 10.1073/pnas.1503477112. Epub 2015 Mar 23.

19.

Mapping and Quantitation of the Interaction between the Recombination Activating Gene Proteins RAG1 and RAG2.

Zhang YH, Shetty K, Surleac MD, Petrescu AJ, Schatz DG.

J Biol Chem. 2015 May 8;290(19):11802-17. doi: 10.1074/jbc.M115.638627. Epub 2015 Mar 5.

20.

Spatio-temporal regulation of RAG2 following genotoxic stress.

Rodgers W, Byrum JN, Sapkota H, Rahman NS, Cail RC, Zhao S, Schatz DG, Rodgers KK.

DNA Repair (Amst). 2015 Mar;27:19-27. doi: 10.1016/j.dnarep.2014.12.008. Epub 2015 Jan 8.

21.

The architecture of the 12RSS in V(D)J recombination signal and synaptic complexes.

Ciubotaru M, Surleac MD, Metskas LA, Koo P, Rhoades E, Petrescu AJ, Schatz DG.

Nucleic Acids Res. 2015 Jan;43(2):917-31. doi: 10.1093/nar/gku1348. Epub 2014 Dec 29.

22.

Super-enhancer transcription converges on AID.

Alinikula J, Schatz DG.

Cell. 2014 Dec 18;159(7):1490-2. doi: 10.1016/j.cell.2014.12.007.

23.

The RAG recombinase dictates functional heterogeneity and cellular fitness in natural killer cells.

Karo JM, Schatz DG, Sun JC.

Cell. 2014 Sep 25;159(1):94-107. doi: 10.1016/j.cell.2014.08.026.

24.

Induction of homologous recombination between sequence repeats by the activation induced cytidine deaminase (AID) protein.

Buerstedde JM, Lowndes N, Schatz DG.

Elife. 2014 Jul 8;3:e03110. doi: 10.7554/eLife.03110.

26.

Targeting of somatic hypermutation by immunoglobulin enhancer and enhancer-like sequences.

Buerstedde JM, Alinikula J, Arakawa H, McDonald JJ, Schatz DG.

PLoS Biol. 2014 Apr 1;12(4):e1001831. doi: 10.1371/journal.pbio.1001831. eCollection 2014 Apr.

27.

Peripheral subnuclear positioning suppresses Tcrb recombination and segregates Tcrb alleles from RAG2.

Chan EA, Teng G, Corbett E, Choudhury KR, Bassing CH, Schatz DG, Krangel MS.

Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):E4628-37. doi: 10.1073/pnas.1310846110. Epub 2013 Nov 11.

28.

A critical context-dependent role for E boxes in the targeting of somatic hypermutation.

McDonald JJ, Alinikula J, Buerstedde JM, Schatz DG.

J Immunol. 2013 Aug 15;191(4):1556-66. doi: 10.4049/jimmunol.1300969. Epub 2013 Jul 8.

29.

Multiple transcription factor binding sites predict AID targeting in non-Ig genes.

Duke JL, Liu M, Yaari G, Khalil AM, Tomayko MM, Shlomchik MJ, Schatz DG, Kleinstein SH.

J Immunol. 2013 Apr 15;190(8):3878-88. doi: 10.4049/jimmunol.1202547. Epub 2013 Mar 20.

30.

Higher-order looping and nuclear organization of Tcra facilitate targeted rag cleavage and regulated rearrangement in recombination centers.

Chaumeil J, Micsinai M, Ntziachristos P, Deriano L, Wang JM, Ji Y, Nora EP, Rodesch MJ, Jeddeloh JA, Aifantis I, Kluger Y, Schatz DG, Skok JA.

Cell Rep. 2013 Feb 21;3(2):359-70. doi: 10.1016/j.celrep.2013.01.024. Epub 2013 Feb 14.

31.

The ataxia telangiectasia mutated kinase controls Igκ allelic exclusion by inhibiting secondary Vκ-to-Jκ rearrangements.

Steinel NC, Lee BS, Tubbs AT, Bednarski JJ, Schulte E, Yang-Iott KS, Schatz DG, Sleckman BP, Bassing CH.

J Exp Med. 2013 Feb 11;210(2):233-9. doi: 10.1084/jem.20121605. Epub 2013 Feb 4.

32.

Cooperative recruitment of HMGB1 during V(D)J recombination through interactions with RAG1 and DNA.

Little AJ, Corbett E, Ortega F, Schatz DG.

Nucleic Acids Res. 2013 Mar 1;41(5):3289-301. doi: 10.1093/nar/gks1461. Epub 2013 Jan 15.

33.

RAG and HMGB1 create a large bend in the 23RSS in the V(D)J recombination synaptic complexes.

Ciubotaru M, Trexler AJ, Spiridon LN, Surleac MD, Rhoades E, Petrescu AJ, Schatz DG.

Nucleic Acids Res. 2013 Feb 1;41(4):2437-54. doi: 10.1093/nar/gks1294. Epub 2013 Jan 4.

34.

Localized epigenetic changes induced by DH recombination restricts recombinase to DJH junctions.

Subrahmanyam R, Du H, Ivanova I, Chakraborty T, Ji Y, Zhang Y, Alt FW, Schatz DG, Sen R.

Nat Immunol. 2012 Dec;13(12):1205-12. doi: 10.1038/ni.2447. Epub 2012 Oct 28.

35.

Identification of core DNA elements that target somatic hypermutation.

Kohler KM, McDonald JJ, Duke JL, Arakawa H, Tan S, Kleinstein SH, Buerstedde JM, Schatz DG.

J Immunol. 2012 Dec 1;189(11):5314-26. doi: 10.4049/jimmunol.1202082. Epub 2012 Oct 19.

36.

A dual interaction between the DNA damage response protein MDC1 and the RAG1 subunit of the V(D)J recombinase.

Coster G, Gold A, Chen D, Schatz DG, Goldberg M.

J Biol Chem. 2012 Oct 19;287(43):36488-98. doi: 10.1074/jbc.M112.402487. Epub 2012 Aug 31.

37.

AID-targeting and hypermutation of non-immunoglobulin genes does not correlate with proximity to immunoglobulin genes in germinal center B cells.

Gramlich HS, Reisbig T, Schatz DG.

PLoS One. 2012;7(6):e39601. doi: 10.1371/journal.pone.0039601. Epub 2012 Jun 29.

38.

Dendritic cell-mediated activation-induced cytidine deaminase (AID)-dependent induction of genomic instability in human myeloma.

Koduru S, Wong E, Strowig T, Sundaram R, Zhang L, Strout MP, Flavell RA, Schatz DG, Dhodapkar KM, Dhodapkar MV.

Blood. 2012 Mar 8;119(10):2302-9. doi: 10.1182/blood-2011-08-376236. Epub 2012 Jan 10.

39.

V(D)J recombination: mechanisms of initiation.

Schatz DG, Swanson PC.

Annu Rev Genet. 2011;45:167-202. doi: 10.1146/annurev-genet-110410-132552. Epub 2011 Aug 19. Review.

PMID:
21854230
40.

A role for cohesin in T-cell-receptor rearrangement and thymocyte differentiation.

Seitan VC, Hao B, Tachibana-Konwalski K, Lavagnolli T, Mira-Bontenbal H, Brown KE, Teng G, Carroll T, Terry A, Horan K, Marks H, Adams DJ, Schatz DG, Aragon L, Fisher AG, Krangel MS, Nasmyth K, Merkenschlager M.

Nature. 2011 Aug 10;476(7361):467-71. doi: 10.1038/nature10312.

41.

Recombination centres and the orchestration of V(D)J recombination.

Schatz DG, Ji Y.

Nat Rev Immunol. 2011 Apr;11(4):251-63. doi: 10.1038/nri2941. Epub 2011 Mar 11. Review.

PMID:
21394103
42.

Uracil residues dependent on the deaminase AID in immunoglobulin gene variable and switch regions.

Maul RW, Saribasak H, Martomo SA, McClure RL, Yang W, Vaisman A, Gramlich HS, Schatz DG, Woodgate R, Wilson DM 3rd, Gearhart PJ.

Nat Immunol. 2011 Jan;12(1):70-6. doi: 10.1038/ni.1970. Epub 2010 Dec 12.

43.

Promoters, enhancers, and transcription target RAG1 binding during V(D)J recombination.

Ji Y, Little AJ, Banerjee JK, Hao B, Oltz EM, Krangel MS, Schatz DG.

J Exp Med. 2010 Dec 20;207(13):2809-16. doi: 10.1084/jem.20101136. Epub 2010 Nov 29.

44.

Sin1-mTORC2 suppresses rag and il7r gene expression through Akt2 in B cells.

Lazorchak AS, Liu D, Facchinetti V, Di Lorenzo A, Sessa WC, Schatz DG, Su B.

Mol Cell. 2010 Aug 13;39(3):433-43. doi: 10.1016/j.molcel.2010.07.031.

45.

The in vivo pattern of binding of RAG1 and RAG2 to antigen receptor loci.

Ji Y, Resch W, Corbett E, Yamane A, Casellas R, Schatz DG.

Cell. 2010 Apr 30;141(3):419-31. doi: 10.1016/j.cell.2010.03.010. Epub 2010 Apr 15. Erratum in: Cell. 2010 Oct 1;143(1):170.

46.

Imatinib resistance and progression of CML to blast crisis: somatic hypermutation AIDing the way.

Strout MP, Schatz DG.

Cancer Cell. 2009 Sep 8;16(3):174-6. doi: 10.1016/j.ccr.2009.08.012.

47.

RAG-1 and ATM coordinate monoallelic recombination and nuclear positioning of immunoglobulin loci.

Hewitt SL, Yin B, Ji Y, Chaumeil J, Marszalek K, Tenthorey J, Salvagiotto G, Steinel N, Ramsey LB, Ghysdael J, Farrar MA, Sleckman BP, Schatz DG, Busslinger M, Bassing CH, Skok JA.

Nat Immunol. 2009 Jun;10(6):655-64. doi: 10.1038/ni.1735. Erratum in: Nat Immunol. 2009 Jun;10(6). doi: 10.1038/ni.1735. Nat Immunol. 2009 Sep;10(9):1034. Nat Immunol. 2010 Mar;11(4):355-6.

48.

Structure of the RAG1 nonamer binding domain with DNA reveals a dimer that mediates DNA synapsis.

Yin FF, Bailey S, Innis CA, Ciubotaru M, Kamtekar S, Steitz TA, Schatz DG.

Nat Struct Mol Biol. 2009 May;16(5):499-508. doi: 10.1038/nsmb.1593. Epub 2009 Apr 26.

49.

Balancing AID and DNA repair during somatic hypermutation.

Liu M, Schatz DG.

Trends Immunol. 2009 Apr;30(4):173-81. doi: 10.1016/j.it.2009.01.007. Epub 2009 Mar 18. Review.

PMID:
19303358
50.

Ebf1-dependent control of the osteoblast and adipocyte lineages.

Hesslein DG, Fretz JA, Xi Y, Nelson T, Zhou S, Lorenzo JA, Schatz DG, Horowitz MC.

Bone. 2009 Apr;44(4):537-46. doi: 10.1016/j.bone.2008.11.021. Epub 2008 Dec 16.

Supplemental Content

Loading ...
Support Center