Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 15

1.

Genome Sequence of an Aspergillus flavus CA14 Strain That Is Widely Used in Gene Function Studies.

Chang PK, Scharfenstein LL, Mack B, Hua SST.

Microbiol Resour Announc. 2019 Aug 15;8(33). pii: e00837-19. doi: 10.1128/MRA.00837-19.

2.

Identification of a copper-transporting ATPase involved in biosynthesis of A. flavus conidial pigment.

Chang PK, Scharfenstein LL, Mack B, Wei Q, Gilbert M, Lebar M, Cary JW.

Appl Microbiol Biotechnol. 2019 Jun;103(12):4889-4897. doi: 10.1007/s00253-019-09820-0. Epub 2019 Apr 29.

PMID:
31037381
3.

Aspergillus flavus aswA, a gene homolog of Aspergillus nidulans oefC, regulates sclerotial development and biosynthesis of sclerotium-associated secondary metabolites.

Chang PK, Scharfenstein LL, Li RW, Arroyo-Manzanares N, De Saeger S, Diana Di Mavungu J.

Fungal Genet Biol. 2017 Jul;104:29-37. doi: 10.1016/j.fgb.2017.04.006. Epub 2017 Apr 22.

PMID:
28442441
4.

The Aspergillus flavus fluP-associated metabolite promotes sclerotial production.

Chang PK, Scharfenstein LL, Ehrlich KC, Diana Di Mavungu J.

Fungal Biol. 2016 Oct;120(10):1258-68. doi: 10.1016/j.funbio.2016.07.010. Epub 2016 Jul 30.

PMID:
27647242
5.

High sequence variations in the region containing genes encoding a cellular morphogenesis protein and the repressor of sexual development help to reveal origins of Aspergillus oryzae.

Chang PK, Scharfenstein LL, Solorzano CD, Abbas HK, Hua SS, Jones WA, Zablotowicz RM.

Int J Food Microbiol. 2015 May 4;200:66-71. doi: 10.1016/j.ijfoodmicro.2015.01.021. Epub 2015 Feb 7.

PMID:
25689355
6.

Transcriptomic profiles of Aspergillus flavus CA42, a strain that produces small sclerotia, by decanal treatment and after recovery.

Chang PK, Scharfenstein LL, Mack B, Yu J, Ehrlich KC.

Fungal Genet Biol. 2014 Jul;68:39-47. doi: 10.1016/j.fgb.2014.04.007. Epub 2014 Apr 26.

PMID:
24780887
7.

Aspergillus flavus VelB acts distinctly from VeA in conidiation and may coordinate with FluG to modulate sclerotial production.

Chang PK, Scharfenstein LL, Li P, Ehrlich KC.

Fungal Genet Biol. 2013 Sep-Oct;58-59:71-9. doi: 10.1016/j.fgb.2013.08.009. Epub 2013 Aug 29.

PMID:
23994319
8.

Deletion of the Aspergillus flavus orthologue of A. nidulans fluG reduces conidiation and promotes production of sclerotia but does not abolish aflatoxin biosynthesis.

Chang PK, Scharfenstein LL, Mack B, Ehrlich KC.

Appl Environ Microbiol. 2012 Nov;78(21):7557-63. doi: 10.1128/AEM.01241-12. Epub 2012 Aug 17.

9.

Effects of laeA deletion on Aspergillus flavus conidial development and hydrophobicity may contribute to loss of aflatoxin production.

Chang PK, Scharfenstein LL, Ehrlich KC, Wei Q, Bhatnagar D, Ingber BF.

Fungal Biol. 2012 Feb;116(2):298-307. doi: 10.1016/j.funbio.2011.12.003. Epub 2011 Dec 17.

PMID:
22289775
10.

Identification of genetic defects in the atoxigenic biocontrol strain Aspergillus flavus K49 reveals the presence of a competitive recombinant group in field populations.

Chang PK, Abbas HK, Weaver MA, Ehrlich KC, Scharfenstein LL, Cotty PJ.

Int J Food Microbiol. 2012 Mar 15;154(3):192-6. doi: 10.1016/j.ijfoodmicro.2012.01.005. Epub 2012 Jan 12.

PMID:
22285533
11.

Loss of msnA, a putative stress regulatory gene, in Aspergillus parasiticus and Aspergillus flavus increased production of conidia, aflatoxins and kojic acid.

Chang PK, Scharfenstein LL, Luo M, Mahoney N, Molyneux RJ, Yu J, Brown RL, Campbell BC.

Toxins (Basel). 2011 Jan;3(1):82-104. doi: 10.3390/toxins3010082. Epub 2011 Jan 12.

12.

Development and refinement of a high-efficiency gene-targeting system for Aspergillus flavus.

Chang PK, Scharfenstein LL, Wei Q, Bhatnagar D.

J Microbiol Methods. 2010 Jun;81(3):240-6. doi: 10.1016/j.mimet.2010.03.010. Epub 2010 Mar 16.

PMID:
20298723
13.

Absence of the aflatoxin biosynthesis gene, norA, allows accumulation of deoxyaflatoxin B1 in Aspergillus flavus cultures.

Ehrlich KC, Chang PK, Scharfenstein LL Jr, Cary JW, Crawford JM, Townsend CA.

FEMS Microbiol Lett. 2010 Apr;305(1):65-70. doi: 10.1111/j.1574-6968.2010.01914.x. Epub 2010 Jan 27.

14.

Are the genes nadA and norB involved in formation of aflatoxin G(1)?

Ehrlich KC, Scharfenstein LL Jr, Montalbano BG, Chang PK.

Int J Mol Sci. 2008 Sep;9(9):1717-29. doi: 10.3390/ijms9091717. Epub 2008 Sep 9.

15.

Disruption of a gene encoding a putative gamma-butyrolactone-binding protein in Streptomyces tendae affects nikkomycin production.

Engel P, Scharfenstein LL, Dyer JM, Cary JW.

Appl Microbiol Biotechnol. 2001 Aug;56(3-4):414-9.

PMID:
11549012

Supplemental Content

Loading ...
Support Center