Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 53

1.

Heat shock factor HSFB2a involved in gametophyte development of Arabidopsis thaliana and its expression is controlled by a heat-inducible long non-coding antisense RNA.

Wunderlich M, Gross-Hardt R, Schöffl F.

Plant Mol Biol. 2014 Aug;85(6):541-50. doi: 10.1007/s11103-014-0202-0. Epub 2014 May 30.

2.

Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b overexpression enhances water productivity, resistance to drought, and infection.

Bechtold U, Albihlal WS, Lawson T, Fryer MJ, Sparrow PA, Richard F, Persad R, Bowden L, Hickman R, Martin C, Beynon JL, Buchanan-Wollaston V, Baker NR, Morison JI, Schöffl F, Ott S, Mullineaux PM.

J Exp Bot. 2013 Aug;64(11):3467-81. doi: 10.1093/jxb/ert185. Epub 2013 Jul 4.

3.

Overexpression of AtHsfB4 induces specific effects on root development of Arabidopsis.

Begum T, Reuter R, Schöffl F.

Mech Dev. 2013 Jan;130(1):54-60. doi: 10.1016/j.mod.2012.05.008. Epub 2012 Jun 5.

4.

Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression.

Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, Nakashima K, Maruyama K, Kim JM, Seki M, Todaka D, Osakabe Y, Sakuma Y, Schöffl F, Shinozaki K, Yamaguchi-Shinozaki K.

Mol Genet Genomics. 2011 Dec;286(5-6):321-32. doi: 10.1007/s00438-011-0647-7. Epub 2011 Sep 20.

PMID:
21931939
5.

Promoter specificity and interactions between early and late Arabidopsis heat shock factors.

Li M, Berendzen KW, Schöffl F.

Plant Mol Biol. 2010 Jul;73(4-5):559-67. doi: 10.1007/s11103-010-9643-2. Epub 2010 May 11.

6.

Detection of in vivo interactions between Arabidopsis class A-HSFs, using a novel BiFC fragment, and identification of novel class B-HSF interacting proteins.

Li M, Doll J, Weckermann K, Oecking C, Berendzen KW, Schöffl F.

Eur J Cell Biol. 2010 Feb-Mar;89(2-3):126-32. doi: 10.1016/j.ejcb.2009.10.012. Epub 2009 Nov 27.

PMID:
19945192
7.

Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis.

Kumar M, Busch W, Birke H, Kemmerling B, Nürnberger T, Schöffl F.

Mol Plant. 2009 Jan;2(1):152-65. doi: 10.1093/mp/ssn095.

8.

Heat stress-induced H(2)O (2) is required for effective expression of heat shock genes in Arabidopsis.

Volkov RA, Panchuk II, Mullineaux PM, Schöffl F.

Plant Mol Biol. 2006 Jul;61(4-5):733-46.

PMID:
16897488
9.

Effects of heat stress on yeast heat shock factor-promoter binding in vivo.

Li N, Zhang LM, Zhang KQ, Deng JS, Prändl R, Schöffl F.

Acta Biochim Biophys Sin (Shanghai). 2006 May;38(5):356-62.

10.
11.
12.

Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis.

Panikulangara TJ, Eggers-Schumacher G, Wunderlich M, Stransky H, Schöffl F.

Plant Physiol. 2004 Oct;136(2):3148-58. Epub 2004 Oct 1.

13.

Detecting DNA-binding of proteins in vivo by UV-crosslinking and immunoprecipitation.

Zhang L, Zhang K, Prändl R, Schöffl F.

Biochem Biophys Res Commun. 2004 Sep 24;322(3):705-11. Review.

PMID:
15336521
14.

Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis.

Lohmann C, Eggers-Schumacher G, Wunderlich M, Schöffl F.

Mol Genet Genomics. 2004 Feb;271(1):11-21. Epub 2003 Dec 4. Erratum in: Mol Genet Genomics. 2004 Apr;271(3):376.

PMID:
14655047
18.
19.
20.

Analysis of heat-shock transcription factor-DNA binding in Arabidopsis suspension cultures by UV laser crosslinking.

Zhang L, Eggers-Schumacher G, Schöffl F, Prändl R.

Plant J. 2001 Oct;28(2):217-23.

22.

Regulation of the heat-shock response.

Schöffl F, Prändl R, Reindl A.

Plant Physiol. 1998 Aug;117(4):1135-41. Review. No abstract available.

23.
24.
26.
28.

Arabidopsis heat shock factor is constitutively active in Drosophila and human cells.

Hübel A, Lee JH, Wu C, Schöffl F.

Mol Gen Genet. 1995 Jul 28;248(2):136-41.

PMID:
7651336
29.
30.
31.
32.
34.

The structure of the mouse parvalbumin gene.

Schleef M, Zühlke C, Jockusch H, Schöffl F.

Mamm Genome. 1992;3(4):217-25.

PMID:
1611216
35.

Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF.

Scharf KD, Rose S, Zott W, Schöffl F, Nover L.

EMBO J. 1990 Dec;9(13):4495-501. Erratum in: EMBO J 1991 Apr;10(4):1026. Schöff F [corrected to Schöffl F].

36.

Heat-inducible hygromycin resistance in transgenic tobacco.

Severin K, Schöffl F.

Plant Mol Biol. 1990 Dec;15(6):827-33.

PMID:
1966490
37.

Genetic mapping and physical characterization of parvalbumin genes.

Schöffl F, Jockusch H.

Int J Biochem. 1990;22(11):1211-5. Review. No abstract available.

PMID:
2257946
38.

cDNA sequence and chromosomal localization of the mouse parvalbumin gene, Pva.

Zühlke C, Schöffl F, Jockusch H, Simon D, Guénet JL.

Genet Res. 1989 Aug;54(1):37-43.

PMID:
2572511
39.

The function of plant heat shock promoter elements in the regulated expression of chimaeric genes in transgenic tobacco.

Schöffl F, Rieping M, Baumann G, Bevan M, Angermüller S.

Mol Gen Genet. 1989 Jun;217(2-3):246-53.

PMID:
2770695
40.

Opposite regulation of the mRNAs for parvalbumin and p19/6.8 in myotonic mouse muscle.

Kluxen FW, Schöffl F, Berchtold MW, Jockusch H.

Eur J Biochem. 1988 Sep 1;176(1):153-8.

41.
42.
43.

Genes for low-molecular-weight heat shock proteins of soybeans: sequence analysis of a multigene family.

Nagao RT, Czarnecka E, Gurley WB, Schöffl F, Key JL.

Mol Cell Biol. 1985 Dec;5(12):3417-28.

45.
46.

Comparative analysis of physical stress responses in soybean seedlings using cloned heat shock cDNAs.

Czarnecka E, Edelman L, Schöffl F, Key JL.

Plant Mol Biol. 1984 Jan;3(1):45-58. doi: 10.1007/BF00023415.

PMID:
24310259
47.
48.

An analysis of mRNAs for a group of heat shock proteins of soybean using cloned cDNAs.

Schöffl F, Key JL.

J Mol Appl Genet. 1982;1(4):301-14.

PMID:
6896722
49.

Basis of transposition and gene amplification by Tn1721 and related tetracycline-resistance transposons.

Schmitt R, Altenbuchner J, Wiebauer K, Arnold W, Pühler A, Schöffl F.

Cold Spring Harb Symp Quant Biol. 1981;45 Pt 1:59-65. No abstract available.

PMID:
6271491
50.

The tetracycline resistance transposons Tn1721 and Tn1771 have three 38-base-pair repeats and generate five-base-pair direct repeats.

Schöffl F, Arnold W, Pühler A, Altenbuchner J, Schmitt R.

Mol Gen Genet. 1981;181(1):87-94.

PMID:
6261087

Supplemental Content

Loading ...
Support Center