Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 93

1.

Molecular Hydrogen Metabolism: a Widespread Trait of Pathogenic Bacteria and Protists.

Benoit SL, Maier RJ, Sawers RG, Greening C.

Microbiol Mol Biol Rev. 2020 Jan 29;84(1). pii: e00092-19. doi: 10.1128/MMBR.00092-19. Print 2020 Feb 19. Review.

PMID:
31996394
2.

The iron-sulfur-containing HypC-HypD scaffold complex of the [NiFe]-hydrogenase maturation machinery is an ATPase.

Nutschan K, Golbik RP, Sawers RG.

FEBS Open Bio. 2019 Dec;9(12):2072-2079. doi: 10.1002/2211-5463.12743. Epub 2019 Oct 29.

3.

Delimiting the Function of the C-Terminal Extension of the Escherichia coli [NiFe]-Hydrogenase 2 Large Subunit Precursor.

Pinske C, Thomas C, Nutschan K, Sawers RG.

Front Microbiol. 2019 Sep 24;10:2223. doi: 10.3389/fmicb.2019.02223. eCollection 2019.

4.

Anaerobic nitrate respiration in the aerobe Streptomyces coelicolor A3(2): helping maintain a proton gradient during dormancy.

Sawers RG, Fischer M, Falke D.

Environ Microbiol Rep. 2019 Oct;11(5):645-650. doi: 10.1111/1758-2229.12781. Epub 2019 Jul 16. Review.

PMID:
31268622
5.

Hypoxia-induced synthesis of respiratory nitrate reductase 2 of Streptomyces coelicolor A3(2) depends on the histidine kinase OsdK in mycelium but not in spores.

Fischer M, Falke D, Rönitz J, Haase A, Damelang T, Pawlik T, Sawers RG.

Microbiology. 2019 Aug;165(8):905-916. doi: 10.1099/mic.0.000829. Epub 2019 Jul 1.

PMID:
31259680
6.

Cytochrome bcc-aa3 Oxidase Supercomplexes in the Aerobic Respiratory Chain of Streptomyces coelicolor A3(2).

Falke D, Fischer M, Biefel B, Ihling C, Hammerschmidt C, Reinefeld K, Haase A, Sinz A, Sawers RG.

J Mol Microbiol Biotechnol. 2018;28(6):255-268. doi: 10.1159/000496390. Epub 2019 Mar 12.

PMID:
30861513
7.

Activity of Spore-Specific Respiratory Nitrate Reductase 1 of Streptomyces coelicolor A3(2) Requires a Functional Cytochrome bcc-aa 3 Oxidase Supercomplex.

Falke D, Biefel B, Haase A, Franke S, Fischer M, Sawers RG.

J Bacteriol. 2019 May 8;201(11). pii: e00104-19. doi: 10.1128/JB.00104-19. Print 2019 Jun 1.

8.

Insights Into the Redox Sensitivity of Chloroflexi Hup-Hydrogenase Derived From Studies in Escherichia coli: Merits and Pitfalls of Heterologous [NiFe]-Hydrogenase Synthesis.

Dragomirova N, Rothe P, Schwoch S, Hartwig S, Pinske C, Sawers RG.

Front Microbiol. 2018 Nov 21;9:2837. doi: 10.3389/fmicb.2018.02837. eCollection 2018.

9.

The Extended C-Terminal α-Helix of the HypC Chaperone Restricts Recognition of Large Subunit Precursors by the Hyp-Scaffold Machinery during [NiFe]-Hydrogenase Maturation in Escherichia coli.

Thomas C, Waclawek M, Nutschan K, Pinske C, Sawers RG.

J Mol Microbiol Biotechnol. 2018;28(2):87-97. doi: 10.1159/000489929. Epub 2018 Jul 11.

10.

Cytochrome bd Oxidase Has an Important Role in Sustaining Growth and Development of Streptomyces coelicolor A3(2) under Oxygen-Limiting Conditions.

Fischer M, Falke D, Naujoks C, Sawers RG.

J Bacteriol. 2018 Jul 25;200(16). pii: e00239-18. doi: 10.1128/JB.00239-18. Print 2018 Aug 15.

11.

Organohalide respiratory chains: composition, topology and key enzymes.

Schubert T, Adrian L, Sawers RG, Diekert G.

FEMS Microbiol Ecol. 2018 Apr 1;94(4). doi: 10.1093/femsec/fiy035. Review.

PMID:
29718172
12.

o-Phthalate derived from plastics' plasticizers and a bacterium's solution to its anaerobic degradation.

Sawers RG.

Mol Microbiol. 2018 Jun;108(6):595-600. doi: 10.1111/mmi.13975. Epub 2018 May 9.

13.

The C-terminal Six Amino Acids of the FNT Channel FocA Are Required for Formate Translocation But Not Homopentamer Integrity.

Hunger D, Röcker M, Falke D, Lilie H, Sawers RG.

Front Microbiol. 2017 Aug 22;8:1616. doi: 10.3389/fmicb.2017.01616. eCollection 2017.

14.

A H2 -oxidizing, 1,2,3-trichlorobenzene-reducing multienzyme complex isolated from the obligately organohalide-respiring bacterium Dehalococcoides mccartyi strain CBDB1.

Hartwig S, Dragomirova N, Kublik A, Türkowsky D, von Bergen M, Lechner U, Adrian L, Sawers RG.

Environ Microbiol Rep. 2017 Oct;9(5):618-625. doi: 10.1111/1758-2229.12560. Epub 2017 Jul 13.

PMID:
28631290
15.

Analysis of HypD Disulfide Redox Chemistry via Optimization of Fourier Transformed ac Voltammetric Data.

Adamson H, Robinson M, Bond PS, Soboh B, Gillow K, Simonov AN, Elton DM, Bond AM, Sawers RG, Gavaghan DJ, Parkin A.

Anal Chem. 2017 Feb 7;89(3):1565-1573. doi: 10.1021/acs.analchem.6b03589. Epub 2017 Jan 19.

16.

Dormancy: Illuminating How a Microbial Sleeping Beauty Awakens.

Sawers RG.

Curr Biol. 2016 Nov 7;26(21):R1139-R1141. doi: 10.1016/j.cub.2016.08.039.

17.

Anaerobic Formate and Hydrogen Metabolism.

Pinske C, Sawers RG.

EcoSal Plus. 2016 Oct;7(1). doi: 10.1128/ecosalplus.ESP-0011-2016. Review.

PMID:
27735784
18.

Phosphate and oxygen limitation induce respiratory nitrate reductase 3 synthesis in stationary-phase mycelium of Streptomyces coelicolor A3(2).

Falke D, Fischer M, Sawers RG.

Microbiology. 2016 Sep;162(9):1689-1697. doi: 10.1099/mic.0.000349. Epub 2016 Aug 5.

PMID:
27499000
19.

Oxygen and Nitrate Respiration in Streptomyces coelicolor A3(2).

Sawers RG, Falke D, Fischer M.

Adv Microb Physiol. 2016;68:1-40. doi: 10.1016/bs.ampbs.2016.02.004. Epub 2016 Mar 10. Review.

PMID:
27134020
20.

The glycyl-radical enzyme 2-ketobutyrate formate-lyase, TdcE, interacts specifically with the formate-translocating FNT-channel protein FocA.

Falke D, Doberenz C, Hunger D, Sawers RG.

Biochem Biophys Rep. 2016 Apr 16;6:185-189. doi: 10.1016/j.bbrep.2016.04.005. eCollection 2016 Jul.

21.

Little red floaters: gas vesicles in an enterobacterium.

Sawers RG.

Environ Microbiol. 2016 Apr;18(4):1091-3. doi: 10.1111/1462-2920.13245. Epub 2016 Mar 17. No abstract available.

PMID:
26992018
22.

Identification of a multi-protein reductive dehalogenase complex in Dehalococcoides mccartyi strain CBDB1 suggests a protein-dependent respiratory electron transport chain obviating quinone involvement.

Kublik A, Deobald D, Hartwig S, Schiffmann CL, Andrades A, von Bergen M, Sawers RG, Adrian L.

Environ Microbiol. 2016 Sep;18(9):3044-56. doi: 10.1111/1462-2920.13200. Epub 2016 Feb 16.

PMID:
26718631
23.

Heterologous complementation studies in Escherichia coli with the Hyp accessory protein machinery from Chloroflexi provide insight into [NiFe]-hydrogenase large subunit recognition by the HypC protein family.

Hartwig S, Thomas C, Krumova N, Quitzke V, Türkowsky D, Jehmlich N, Adrian L, Sawers RG.

Microbiology. 2015 Nov;161(11):2204-19. doi: 10.1099/mic.0.000177. Epub 2015 Sep 11.

PMID:
26364315
24.

Identification of an Isothiocyanate on the HypEF Complex Suggests a Route for Efficient Cyanyl-Group Channeling during [NiFe]-Hydrogenase Cofactor Generation.

Stripp ST, Lindenstrauss U, Sawers RG, Soboh B.

PLoS One. 2015 Jul 17;10(7):e0133118. doi: 10.1371/journal.pone.0133118. eCollection 2015.

25.

Coordination of Synthesis and Assembly of a Modular Membrane-Associated [NiFe]-Hydrogenase Is Determined by Cleavage of the C-Terminal Peptide.

Thomas C, Muhr E, Sawers RG.

J Bacteriol. 2015 Sep;197(18):2989-98. doi: 10.1128/JB.00437-15. Epub 2015 Jul 13.

26.

Chromogenic assessment of the three molybdo-selenoprotein formate dehydrogenases in Escherichia coli.

Hartwig S, Pinske C, Sawers RG.

Biochem Biophys Rep. 2015 Mar 30;1:62-67. doi: 10.1016/j.bbrep.2015.03.006. eCollection 2015 May.

27.

SlyD-dependent nickel delivery limits maturation of [NiFe]-hydrogenases in late-stationary phase Escherichia coli cells.

Pinske C, Sargent F, Sawers RG.

Metallomics. 2015 Apr;7(4):683-90. doi: 10.1039/c5mt00019j.

PMID:
25620052
28.

Of mothballs and old yellow enzymes.

Sawers RG.

Mol Microbiol. 2015 Jan;95(2):157-61. doi: 10.1111/mmi.12874. Epub 2014 Dec 19.

29.

The importance of iron in the biosynthesis and assembly of [NiFe]-hydrogenases.

Pinske C, Sawers RG.

Biomol Concepts. 2014 Mar;5(1):55-70. doi: 10.1515/bmc-2014-0001. Review.

PMID:
25372742
30.

Physiology and bioenergetics of [NiFe]-hydrogenase 2-catalyzed H2-consuming and H2-producing reactions in Escherichia coli.

Pinske C, Jaroschinsky M, Linek S, Kelly CL, Sargent F, Sawers RG.

J Bacteriol. 2015 Jan;197(2):296-306. doi: 10.1128/JB.02335-14. Epub 2014 Nov 3.

31.

Mapping cell envelope and periplasm protein interactions of Escherichia coli respiratory formate dehydrogenases by chemical cross-linking and mass spectrometry.

Zorn M, Ihling CH, Golbik R, Sawers RG, Sinz A.

J Proteome Res. 2014 Dec 5;13(12):5524-35. doi: 10.1021/pr5004906. Epub 2014 Oct 3.

PMID:
25251153
32.

Oxygen-dependent control of respiratory nitrate reduction in mycelium of Streptomyces coelicolor A3(2).

Fischer M, Falke D, Pawlik T, Sawers RG.

J Bacteriol. 2014 Dec;196(23):4152-62. doi: 10.1128/JB.02202-14. Epub 2014 Sep 15.

33.

The influence of oxygen on [NiFe]-hydrogenase cofactor biosynthesis and how ligation of carbon monoxide precedes cyanation.

Stripp ST, Lindenstrauss U, Granich C, Sawers RG, Soboh B.

PLoS One. 2014 Sep 11;9(9):e107488. doi: 10.1371/journal.pone.0107488. eCollection 2014.

34.

Pyruvate formate-lyase interacts directly with the formate channel FocA to regulate formate translocation.

Doberenz C, Zorn M, Falke D, Nannemann D, Hunger D, Beyer L, Ihling CH, Meiler J, Sinz A, Sawers RG.

J Mol Biol. 2014 Jul 29;426(15):2827-39. doi: 10.1016/j.jmb.2014.05.023. Epub 2014 Jun 2.

35.

Identification of key residues in the formate channel FocA that control import and export of formate.

Hunger D, Doberenz C, Sawers RG.

Biol Chem. 2014 Jul;395(7-8):813-25. doi: 10.1515/hsz-2014-0154.

PMID:
24659605
36.

Hydrogen-oxidizing hydrogenases 1 and 2 of Escherichia coli regulate the onset of hydrogen evolution and ATPase activity, respectively, during glucose fermentation at alkaline pH.

Poladyan A, Trchounian K, Sawers RG, Trchounian A.

FEMS Microbiol Lett. 2013 Nov;348(2):143-8. doi: 10.1111/1574-6968.12281. Epub 2013 Oct 10.

37.

A respiratory nitrate reductase active exclusively in resting spores of the obligate aerobe Streptomyces coelicolor A3(2).

Fischer M, Falke D, Sawers RG.

Mol Microbiol. 2013 Sep;89(6):1259-73. doi: 10.1111/mmi.12344. Epub 2013 Aug 14.

38.

The [NiFe]-hydrogenase accessory chaperones HypC and HybG of Escherichia coli are iron- and carbon dioxide-binding proteins.

Soboh B, Stripp ST, Bielak C, Lindenstrauß U, Braussemann M, Javaid M, Hallensleben M, Granich C, Herzberg M, Heberle J, Sawers RG.

FEBS Lett. 2013 Aug 19;587(16):2512-6. doi: 10.1016/j.febslet.2013.06.055. Epub 2013 Jul 10.

39.

A universally applicable and rapid method for measuring the growth of streptomyces and other filamentous microorganisms by methylene blue adsorption-desorption.

Fischer M, Sawers RG.

Appl Environ Microbiol. 2013 Jul;79(14):4499-502. doi: 10.1128/AEM.00778-13. Epub 2013 May 10.

40.

Selective selC-independent selenocysteine incorporation into formate dehydrogenases.

Zorn M, Ihling CH, Golbik R, Sawers RG, Sinz A.

PLoS One. 2013 Apr 25;8(4):e61913. doi: 10.1371/journal.pone.0061913. Print 2013.

41.

HypD is the scaffold protein for Fe-(CN)2CO cofactor assembly in [NiFe]-hydrogenase maturation.

Stripp ST, Soboh B, Lindenstrauss U, Braussemann M, Herzberg M, Nies DH, Sawers RG, Heberle J.

Biochemistry. 2013 May 14;52(19):3289-96. doi: 10.1021/bi400302v. Epub 2013 May 2.

PMID:
23597401
42.

Levels of control exerted by the Isc iron-sulfur cluster system on biosynthesis of the formate hydrogenlyase complex.

Pinske C, Jaroschinsky M, Sawers RG.

Microbiology. 2013 Jun;159(Pt 6):1179-1189. doi: 10.1099/mic.0.066142-0. Epub 2013 Apr 4.

PMID:
23558265
43.

Staphylococcus aureus and Pseudomonas aeruginosa express and secrete human surfactant proteins.

Bräuer L, Schicht M, Worlitzsch D, Bensel T, Sawers RG, Paulsen F.

PLoS One. 2013;8(1):e53705. doi: 10.1371/journal.pone.0053705. Epub 2013 Jan 22.

44.

Coordination of FocA and pyruvate formate-lyase synthesis in Escherichia coli demonstrates preferential translocation of formate over other mixed-acid fermentation products.

Beyer L, Doberenz C, Falke D, Hunger D, Suppmann B, Sawers RG.

J Bacteriol. 2013 Apr;195(7):1428-35. doi: 10.1128/JB.02166-12. Epub 2013 Jan 18.

45.

Contribution of hydrogenase 2 to stationary phase H2 production by Escherichia coli during fermentation of glycerol.

Trchounian K, Soboh B, Sawers RG, Trchounian A.

Cell Biochem Biophys. 2013 May;66(1):103-8. doi: 10.1007/s12013-012-9458-7.

PMID:
23090790
46.

Evidence for an oxygen-sensitive iron-sulfur cluster in an immature large subunit species of Escherichia coli [NiFe]-hydrogenase 2.

Soboh B, Kuhns M, Braussemann M, Waclawek M, Muhr E, Pierik AJ, Sawers RG.

Biochem Biophys Res Commun. 2012 Jul 20;424(1):158-63. doi: 10.1016/j.bbrc.2012.06.096. Epub 2012 Jun 23.

PMID:
22735263
47.

Terminal reduction reactions of nitrate and sulfate assimilation in Streptomyces coelicolor A3(2): identification of genes encoding nitrite and sulfite reductases.

Fischer M, Schmidt C, Falke D, Sawers RG.

Res Microbiol. 2012 Jun;163(5):340-8. doi: 10.1016/j.resmic.2012.05.004. Epub 2012 Jun 1.

PMID:
22659143
48.

Aconitase B is required for optimal growth of Xanthomonas campestris pv. vesicatoria in pepper plants.

Kirchberg J, Büttner D, Thiemer B, Sawers RG.

PLoS One. 2012;7(4):e34941. doi: 10.1371/journal.pone.0034941. Epub 2012 Apr 6.

49.
50.

Analysis of hydrogenase 1 levels reveals an intimate link between carbon and hydrogen metabolism in Escherichia coli K-12.

Pinske C, McDowall JS, Sargent F, Sawers RG.

Microbiology. 2012 Mar;158(Pt 3):856-868. doi: 10.1099/mic.0.056622-0. Epub 2012 Jan 12.

PMID:
22241049

Supplemental Content

Loading ...
Support Center