Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 34

1.

Global Transcriptomic Analysis of the Candida albicans Response to Treatment with a Novel Inhibitor of Filamentation.

Romo JA, Zhang H, Cai H, Kadosh D, Koehler JR, Saville SP, Wang Y, Lopez-Ribot JL.

mSphere. 2019 Sep 11;4(5). pii: e00620-19. doi: 10.1128/mSphere.00620-19.

2.

Contributions of Candida albicans Dimorphism, Adhesive Interactions, and Extracellular Matrix to the Formation of Dual-Species Biofilms with Streptococcus gordonii.

Montelongo-Jauregui D, Saville SP, Lopez-Ribot JL.

MBio. 2019 Jun 18;10(3). pii: e01179-19. doi: 10.1128/mBio.01179-19.

3.

Candida albicans Morphology-Dependent Host FGF-2 Response as a Potential Therapeutic Target.

Vellanki S, Huh EY, Saville SP, Lee SC.

J Fungi (Basel). 2019 Mar 5;5(1). pii: E22. doi: 10.3390/jof5010022.

4.

Role of the Fractalkine Receptor in CNS Autoimmune Inflammation: New Approach Utilizing a Mouse Model Expressing the Human CX3CR1I249/M280 Variant.

Cardona SM, Kim SV, Church KA, Torres VO, Cleary IA, Mendiola AS, Saville SP, Watowich SS, Parker-Thornburg J, Soto-Ospina A, Araque P, Ransohoff RM, Cardona AE.

Front Cell Neurosci. 2018 Oct 17;12:365. doi: 10.3389/fncel.2018.00365. eCollection 2018.

5.

In Vitro Characterization of a Biaryl Amide Anti-virulence Compound Targeting Candida albicans Filamentation and Biofilm Formation.

Romo JA, Pierce CG, Esqueda M, Hung CY, Saville SP, Lopez-Ribot JL.

Front Cell Infect Microbiol. 2018 Jul 10;8:227. doi: 10.3389/fcimb.2018.00227. eCollection 2018.

6.

Development of Anti-Virulence Approaches for Candidiasis via a Novel Series of Small-Molecule Inhibitors of Candida albicans Filamentation.

Romo JA, Pierce CG, Chaturvedi AK, Lazzell AL, McHardy SF, Saville SP, Lopez-Ribot JL.

MBio. 2017 Dec 5;8(6). pii: e01991-17. doi: 10.1128/mBio.01991-17.

7.

Targeting Candida albicans filamentation for antifungal drug development.

Vila T, Romo JA, Pierce CG, McHardy SF, Saville SP, Lopez-Ribot JL.

Virulence. 2017 Feb 17;8(2):150-158. doi: 10.1080/21505594.2016.1197444. Epub 2016 Jun 7. Review.

8.

Examination of the pathogenic potential of Candida albicans filamentous cells in an animal model of haematogenously disseminated candidiasis.

Cleary IA, Reinhard SM, Lazzell AL, Monteagudo C, Thomas DP, Lopez-Ribot JL, Saville SP.

FEMS Yeast Res. 2016 Mar;16(2):fow011. doi: 10.1093/femsyr/fow011. Epub 2016 Feb 5.

9.

A Novel Small Molecule Inhibitor of Candida albicans Biofilm Formation, Filamentation and Virulence with Low Potential for the Development of Resistance.

Pierce CG, Chaturvedi AK, Lazzell AL, Powell AT, Saville SP, McHardy SF, Lopez-Ribot JL.

NPJ Biofilms Microbiomes. 2015;1. pii: 15012. Epub 2015 Aug 12.

10.

High-content phenotypic screenings to identify inhibitors of Candida albicans biofilm formation and filamentation.

Pierce CG, Saville SP, Lopez-Ribot JL.

Pathog Dis. 2014 Apr;70(3):423-31. doi: 10.1111/2049-632X.12161. Epub 2014 Mar 11.

11.

BRG1 and NRG1 form a novel feedback circuit regulating Candida albicans hypha formation and virulence.

Cleary IA, Lazzell AL, Monteagudo C, Thomas DP, Saville SP.

Mol Microbiol. 2012 Aug;85(3):557-73. doi: 10.1111/j.1365-2958.2012.08127.x. Epub 2012 Jul 5.

12.

Investigating the function of Ddr48p in Candida albicans.

Cleary IA, MacGregor NB, Saville SP, Thomas DP.

Eukaryot Cell. 2012 Jun;11(6):718-24. doi: 10.1128/EC.00107-12. Epub 2012 Apr 20.

13.

Validation of the tetracycline regulatable gene expression system for the study of the pathogenesis of infectious disease.

Chaturvedi AK, Lazzell AL, Saville SP, Wormley FL Jr, Monteagudo C, Lopez-Ribot JL.

PLoS One. 2011;6(5):e20449. doi: 10.1371/journal.pone.0020449. Epub 2011 May 25.

14.

Candida albicans adhesin Als3p is dispensable for virulence in the mouse model of disseminated candidiasis.

Cleary IA, Reinhard SM, Miller CL, Murdoch C, Thornhill MH, Lazzell AL, Monteagudo C, Thomas DP, Saville SP.

Microbiology. 2011 Jun;157(Pt 6):1806-15. doi: 10.1099/mic.0.046326-0. Epub 2011 Mar 24.

15.

Evaluation of tissue engineered models of the oral mucosa to investigate oral candidiasis.

Yadev NP, Murdoch C, Saville SP, Thornhill MH.

Microb Pathog. 2011 Jun;50(6):278-85. doi: 10.1016/j.micpath.2010.11.009. Epub 2011 Feb 3.

16.

The transcriptional regulator Nrg1p controls Candida albicans biofilm formation and dispersion.

Uppuluri P, Pierce CG, Thomas DP, Bubeck SS, Saville SP, Lopez-Ribot JL.

Eukaryot Cell. 2010 Oct;9(10):1531-7. doi: 10.1128/EC.00111-10. Epub 2010 Aug 13.

17.

Pseudohyphal regulation by the transcription factor Rfg1p in Candida albicans.

Cleary IA, Mulabagal P, Reinhard SM, Yadev NP, Murdoch C, Thornhill MH, Lazzell AL, Monteagudo C, Thomas DP, Saville SP.

Eukaryot Cell. 2010 Sep;9(9):1363-73. doi: 10.1128/EC.00088-10. Epub 2010 Jul 23.

18.

An analysis of the impact of NRG1 overexpression on the Candida albicans response to specific environmental stimuli.

Cleary IA, Saville SP.

Mycopathologia. 2010 Jul;170(1):1-10. doi: 10.1007/s11046-010-9297-2. Epub 2010 Mar 17.

19.

Adhesion of Candida albicans to endothelial cells under physiological conditions of flow.

Grubb SE, Murdoch C, Sudbery PE, Saville SP, Lopez-Ribot JL, Thornhill MH.

Infect Immun. 2009 Sep;77(9):3872-8. doi: 10.1128/IAI.00518-09. Epub 2009 Jul 6.

20.

Efficacy of a genetically engineered Candida albicans tet-NRG1 strain as an experimental live attenuated vaccine against hematogenously disseminated candidiasis.

Saville SP, Lazzell AL, Chaturvedi AK, Monteagudo C, Lopez-Ribot JL.

Clin Vaccine Immunol. 2009 Mar;16(3):430-2. doi: 10.1128/CVI.00480-08. Epub 2009 Jan 14.

21.

Candida albicans-endothelial cell interactions: a key step in the pathogenesis of systemic candidiasis.

Grubb SE, Murdoch C, Sudbery PE, Saville SP, Lopez-Ribot JL, Thornhill MH.

Infect Immun. 2008 Oct;76(10):4370-7. doi: 10.1128/IAI.00332-08. Epub 2008 Jun 23. Review. No abstract available.

22.
23.

A proteomic-based approach for the identification of Candida albicans protein components present in a subunit vaccine that protects against disseminated candidiasis.

Thomas DP, Viudes A, Monteagudo C, Lazzell AL, Saville SP, López-Ribot JL.

Proteomics. 2006 Nov;6(22):6033-41.

PMID:
17051645
24.

Inhibition of filamentation can be used to treat disseminated candidiasis.

Saville SP, Lazzell AL, Bryant AP, Fretzen A, Monreal A, Solberg EO, Monteagudo C, Lopez-Ribot JL, Milne GT.

Antimicrob Agents Chemother. 2006 Oct;50(10):3312-6.

25.

Drosophila melanogaster as a facile model for large-scale studies of virulence mechanisms and antifungal drug efficacy in Candida species.

Chamilos G, Lionakis MS, Lewis RE, Lopez-Ribot JL, Saville SP, Albert ND, Halder G, Kontoyiannis DP.

J Infect Dis. 2006 Apr 1;193(7):1014-22. Epub 2006 Feb 28. Erratum in: J Infect Dis. 2006 Nov 1;194(9):1342.

PMID:
16518764
26.

Use of genome information for the study of the pathogenesis of fungal infections and the development of diagnostic tools.

Saville SP, Thomas DP, López-Ribot JL.

Rev Iberoam Micol. 2005 Dec;22(4):238-41. Review.

27.

A role for Efg1p in Candida albicans interactions with extracellular matrices.

Saville SP, Thomas DP, López Ribot JL.

FEMS Microbiol Lett. 2006 Mar;256(1):151-8.

28.

Candida biofilms: an update.

Ramage G, Saville SP, Thomas DP, López-Ribot JL.

Eukaryot Cell. 2005 Apr;4(4):633-8. Review. No abstract available.

29.
30.

WIP participates in actin reorganization and ruffle formation induced by PDGF.

Antón IM, Saville SP, Byrne MJ, Curcio C, Ramesh N, Hartwig JH, Geha RS.

J Cell Sci. 2003 Jun 15;116(Pt 12):2443-51. Epub 2003 Apr 30.

31.

Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule.

Ramage G, Saville SP, Wickes BL, López-Ribot JL.

Appl Environ Microbiol. 2002 Nov;68(11):5459-63.

32.

WIP regulates N-WASP-mediated actin polymerization and filopodium formation.

Martinez-Quiles N, Rohatgi R, Antón IM, Medina M, Saville SP, Miki H, Yamaguchi H, Takenawa T, Hartwig JH, Geha RS, Ramesh N.

Nat Cell Biol. 2001 May;3(5):484-91.

PMID:
11331876
33.

Characterization of PKC2, a gene encoding a second protein kinase C isotype of Saccharomyces cerevisiae.

Simon AJ, Saville SP, Jamieson L, Pocklington MJ, Donnelly SF, Ron D, Milner Y, Mochly-Rosent D, Orr-Sternlicht E.

Curr Biol. 1993 Dec 1;3(12):813-21.

PMID:
15335814
34.

The identification and purification of a mammalian-like protein kinase C in the yeast Saccharomyces cerevisiae.

Simon AJ, Milner Y, Saville SP, Dvir A, Mochly-Rosen D, Orr E.

Proc Biol Sci. 1991 Feb 22;243(1307):165-71.

PMID:
1676520

Supplemental Content

Loading ...
Support Center