Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 179

1.

The structure of hydrogenase-2 from Escherichia coli: implications for H2-driven proton pumping.

Beaton SE, Evans RM, Finney AJ, Lamont CM, Armstrong FA, Sargent F, Carr SB.

Biochem J. 2018 Apr 16;475(7):1353-1370. doi: 10.1042/BCJ20180053.

2.

Efficient Hydrogen-Dependent Carbon Dioxide Reduction by Escherichia coli.

Roger M, Brown F, Gabrielli W, Sargent F.

Curr Biol. 2018 Jan 8;28(1):140-145.e2. doi: 10.1016/j.cub.2017.11.050. Epub 2017 Dec 28.

3.

Structure and activity of ChiX: a peptidoglycan hydrolase required for chitinase secretion by Serratia marcescens.

Owen RA, Fyfe PK, Lodge A, Biboy J, Vollmer W, Hunter WN, Sargent F.

Biochem J. 2018 Jan 23;475(2):415-428. doi: 10.1042/BCJ20170633.

4.

The dual-function chaperone HycH improves assembly of the formate hydrogenlyase complex.

Lindenstrauß U, Skorupa P, McDowall JS, Sargent F, Pinske C.

Biochem J. 2017 Aug 11;474(17):2937-2950. doi: 10.1042/BCJ20170431.

PMID:
28718449
5.

Expanding the substrates for a bacterial hydrogenlyase reaction.

Lamont CM, Kelly CL, Pinske C, Buchanan G, Palmer T, Sargent F.

Microbiology. 2017 May 10. doi: 10.1099/mic.0.000471. [Epub ahead of print]

6.

Identification of a stable complex between a [NiFe]-hydrogenase catalytic subunit and its maturation protease.

Albareda M, Buchanan G, Sargent F.

FEBS Lett. 2017 Jan;591(2):338-347. doi: 10.1002/1873-3468.12540. Epub 2017 Jan 11.

7.

Biosynthesis of selenate reductase in Salmonella enterica: critical roles for the signal peptide and DmsD.

Connelly KR, Stevenson C, Kneuper H, Sargent F.

Microbiology. 2016 Dec;162(12):2136-2146. doi: 10.1099/mic.0.000381. Epub 2016 Oct 20.

8.

Design and characterisation of synthetic operons for biohydrogen technology.

Lamont CM, Sargent F.

Arch Microbiol. 2017 Apr;199(3):495-503. doi: 10.1007/s00203-016-1322-5. Epub 2016 Nov 21.

9.

Biosynthesis of Salmonella enterica [NiFe]-hydrogenase-5: probing the roles of system-specific accessory proteins.

Bowman L, Balbach J, Walton J, Sargent F, Parkin A.

J Biol Inorg Chem. 2016 Oct;21(7):865-73. doi: 10.1007/s00775-016-1385-4. Epub 2016 Aug 26.

10.

Hydrogen activation by [NiFe]-hydrogenases.

Carr SB, Evans RM, Brooke EJ, Wehlin SA, Nomerotskaia E, Sargent F, Armstrong FA, Phillips SE.

Biochem Soc Trans. 2016 Jun 15;44(3):863-8. doi: 10.1042/BST20160031. Review.

PMID:
27284053
11.
12.

The Model [NiFe]-Hydrogenases of Escherichia coli.

Sargent F.

Adv Microb Physiol. 2016;68:433-507. doi: 10.1016/bs.ampbs.2016.02.008. Epub 2016 Mar 23. Review.

PMID:
27134027
13.

How the oxygen tolerance of a [NiFe]-hydrogenase depends on quaternary structure.

Wulff P, Thomas C, Sargent F, Armstrong FA.

J Biol Inorg Chem. 2016 Mar;21(1):121-34. doi: 10.1007/s00775-015-1327-6. Epub 2016 Feb 9.

14.

Integration of an [FeFe]-hydrogenase into the anaerobic metabolism of Escherichia coli.

Kelly CL, Pinske C, Murphy BJ, Parkin A, Armstrong F, Palmer T, Sargent F.

Biotechnol Rep (Amst). 2015 Dec;8:94-104.

15.

Mechanism of hydrogen activation by [NiFe] hydrogenases.

Evans RM, Brooke EJ, Wehlin SA, Nomerotskaia E, Sargent F, Carr SB, Phillips SE, Armstrong FA.

Nat Chem Biol. 2016 Jan;12(1):46-50. doi: 10.1038/nchembio.1976. Epub 2015 Nov 30.

PMID:
26619250
16.

Dissection and engineering of the Escherichia coli formate hydrogenlyase complex.

McDowall JS, Hjersing MC, Palmer T, Sargent F.

FEBS Lett. 2015 Oct 7;589(20 Pt B):3141-7. doi: 10.1016/j.febslet.2015.08.043. Epub 2015 Sep 7.

17.

SlyD-dependent nickel delivery limits maturation of [NiFe]-hydrogenases in late-stationary phase Escherichia coli cells.

Pinske C, Sargent F, Sawers RG.

Metallomics. 2015 Apr;7(4):683-90. doi: 10.1039/c5mt00019j.

PMID:
25620052
18.

A holin and an endopeptidase are essential for chitinolytic protein secretion in Serratia marcescens.

Hamilton JJ, Marlow VL, Owen RA, Costa Mde A, Guo M, Buchanan G, Chandra G, Trost M, Coulthurst SJ, Palmer T, Stanley-Wall NR, Sargent F.

J Cell Biol. 2014 Dec 8;207(5):615-26. doi: 10.1083/jcb.201404127.

19.

Physiology and bioenergetics of [NiFe]-hydrogenase 2-catalyzed H2-consuming and H2-producing reactions in Escherichia coli.

Pinske C, Jaroschinsky M, Linek S, Kelly CL, Sargent F, Sawers RG.

J Bacteriol. 2015 Jan;197(2):296-306. doi: 10.1128/JB.02335-14. Epub 2014 Nov 3.

20.

Bacterial formate hydrogenlyase complex.

McDowall JS, Murphy BJ, Haumann M, Palmer T, Armstrong FA, Sargent F.

Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):E3948-56. doi: 10.1073/pnas.1407927111. Epub 2014 Aug 25.

21.

How oxygen reacts with oxygen-tolerant respiratory [NiFe]-hydrogenases.

Wulff P, Day CC, Sargent F, Armstrong FA.

Proc Natl Acad Sci U S A. 2014 May 6;111(18):6606-11. doi: 10.1073/pnas.1322393111. Epub 2014 Apr 8.

22.

How the structure of the large subunit controls function in an oxygen-tolerant [NiFe]-hydrogenase.

Bowman L, Flanagan L, Fyfe PK, Parkin A, Hunter WN, Sargent F.

Biochem J. 2014 Mar 15;458(3):449-58. doi: 10.1042/BJ20131520.

23.

Characterization of a periplasmic nitrate reductase in complex with its biosynthetic chaperone.

Dow JM, Grahl S, Ward R, Evans R, Byron O, Norman DG, Palmer T, Sargent F.

FEBS J. 2014 Jan;281(1):246-60. doi: 10.1111/febs.12592. Epub 2013 Dec 9.

24.

A regulatory domain controls the transport activity of a twin-arginine signal peptide.

Bowman L, Palmer T, Sargent F.

FEBS Lett. 2013 Oct 11;587(20):3365-70. doi: 10.1016/j.febslet.2013.09.005. Epub 2013 Sep 10.

25.

A synthetic system for expression of components of a bacterial microcompartment.

Sargent F, Davidson FA, Kelly CL, Binny R, Christodoulides N, Gibson D, Johansson E, Kozyrska K, Lado LL, Maccallum J, Montague R, Ortmann B, Owen R, Coulthurst SJ, Dupuy L, Prescott AR, Palmer T.

Microbiology. 2013 Nov;159(Pt 11):2427-36. doi: 10.1099/mic.0.069922-0. Epub 2013 Sep 6.

26.

Signal peptide etiquette during assembly of a complex respiratory enzyme.

James MJ, Coulthurst SJ, Palmer T, Sargent F.

Mol Microbiol. 2013 Oct;90(2):400-14. doi: 10.1111/mmi.12373. Epub 2013 Sep 8.

27.

Characterization of a pre-export enzyme-chaperone complex on the twin-arginine transport pathway.

Dow JM, Gabel F, Sargent F, Palmer T.

Biochem J. 2013 May 15;452(1):57-66. doi: 10.1042/BJ20121832.

28.

Principles of sustained enzymatic hydrogen oxidation in the presence of oxygen--the crucial influence of high potential Fe-S clusters in the electron relay of [NiFe]-hydrogenases.

Evans RM, Parkin A, Roessler MM, Murphy BJ, Adamson H, Lukey MJ, Sargent F, Volbeda A, Fontecilla-Camps JC, Armstrong FA.

J Am Chem Soc. 2013 Feb 20;135(7):2694-707. doi: 10.1021/ja311055d. Epub 2013 Feb 11.

PMID:
23398301
29.

Crystal structure of the O(2)-tolerant membrane-bound hydrogenase 1 from Escherichia coli in complex with its cognate cytochrome b.

Volbeda A, Darnault C, Parkin A, Sargent F, Armstrong FA, Fontecilla-Camps JC.

Structure. 2013 Jan 8;21(1):184-190. doi: 10.1016/j.str.2012.11.010. Epub 2012 Dec 20.

30.

Zymographic differentiation of [NiFe]-hydrogenases 1, 2 and 3 of Escherichia coli K-12.

Pinske C, Jaroschinsky M, Sargent F, Sawers G.

BMC Microbiol. 2012 Jul 6;12:134. doi: 10.1186/1471-2180-12-134.

31.

The hows and whys of aerobic H2 metabolism.

Parkin A, Sargent F.

Curr Opin Chem Biol. 2012 Apr;16(1-2):26-34. doi: 10.1016/j.cbpa.2012.01.012. Epub 2012 Feb 25. Review.

PMID:
22366384
32.

Overlapping transport and chaperone-binding functions within a bacterial twin-arginine signal peptide.

Grahl S, Maillard J, Spronk CA, Vuister GW, Sargent F.

Mol Microbiol. 2012 Mar;83(6):1254-67. doi: 10.1111/j.1365-2958.2012.08005.x. Epub 2012 Feb 27.

33.

Conserved signal peptide recognition systems across the prokaryotic domains.

Coulthurst SJ, Dawson A, Hunter WN, Sargent F.

Biochemistry. 2012 Feb 28;51(8):1678-86. doi: 10.1021/bi201852d. Epub 2012 Feb 13.

34.

Analysis of hydrogenase 1 levels reveals an intimate link between carbon and hydrogen metabolism in Escherichia coli K-12.

Pinske C, McDowall JS, Sargent F, Sawers RG.

Microbiology. 2012 Mar;158(Pt 3):856-68. doi: 10.1099/mic.0.056622-0. Epub 2012 Jan 12.

PMID:
22241049
35.

Oxygen-tolerant [NiFe]-hydrogenases: the individual and collective importance of supernumerary cysteines at the proximal Fe-S cluster.

Lukey MJ, Roessler MM, Parkin A, Evans RM, Davies RA, Lenz O, Friedrich B, Sargent F, Armstrong FA.

J Am Chem Soc. 2011 Oct 26;133(42):16881-92. doi: 10.1021/ja205393w. Epub 2011 Oct 4.

PMID:
21916508
36.

How Salmonella oxidises H(2) under aerobic conditions.

Parkin A, Bowman L, Roessler MM, Davies RA, Palmer T, Armstrong FA, Sargent F.

FEBS Lett. 2012 Mar 9;586(5):536-44. doi: 10.1016/j.febslet.2011.07.044. Epub 2011 Aug 5.

37.

Efficient electron transfer from hydrogen to benzyl viologen by the [NiFe]-hydrogenases of Escherichia coli is dependent on the coexpression of the iron-sulfur cluster-containing small subunit.

Pinske C, Krüger S, Soboh B, Ihling C, Kuhns M, Braussemann M, Jaroschinsky M, Sauer C, Sargent F, Sinz A, Sawers RG.

Arch Microbiol. 2011 Dec;193(12):893-903. doi: 10.1007/s00203-011-0726-5. Epub 2011 Jun 30.

PMID:
21717143
38.

Characterisation of the membrane-extrinsic domain of the TatB component of the twin arginine protein translocase.

Maldonado B, Kneuper H, Buchanan G, Hatzixanthis K, Sargent F, Berks BC, Palmer T.

FEBS Lett. 2011 Feb 4;585(3):478-84. doi: 10.1016/j.febslet.2011.01.016. Epub 2011 Jan 13.

39.

Towards an integrated system for bio-energy: hydrogen production by Escherichia coli and use of palladium-coated waste cells for electricity generation in a fuel cell.

Orozco RL, Redwood MD, Yong P, Caldelari I, Sargent F, Macaskie LE.

Biotechnol Lett. 2010 Dec;32(12):1837-45. doi: 10.1007/s10529-010-0383-9. Epub 2010 Sep 1.

PMID:
20809286
40.

The Tat Protein Export Pathway.

Palmer T, Sargent F, Berks BC.

EcoSal Plus. 2010 Sep;4(1). doi: 10.1128/ecosalplus.4.3.2.

PMID:
26443788
41.

Involvement of hydrogenases in the formation of highly catalytic Pd(0) nanoparticles by bioreduction of Pd(II) using Escherichia coli mutant strains.

Deplanche K, Caldelari I, Mikheenko IP, Sargent F, Macaskie LE.

Microbiology. 2010 Sep;156(Pt 9):2630-40. doi: 10.1099/mic.0.036681-0. Epub 2010 Jun 11.

PMID:
20542928
42.

Analysis of Tat targeting function and twin-arginine signal peptide activity in Escherichia coli.

Palmer T, Berks BC, Sargent F.

Methods Mol Biol. 2010;619:191-216. doi: 10.1007/978-1-60327-412-8_12.

PMID:
20419412
43.

Intrinsic GTPase activity of a bacterial twin-arginine translocation proofreading chaperone induced by domain swapping.

Guymer D, Maillard J, Agacan MF, Brearley CA, Sargent F.

FEBS J. 2010 Jan;277(2):511-25. doi: 10.1111/j.1742-4658.2009.07507.x.

44.

How Escherichia coli is equipped to oxidize hydrogen under different redox conditions.

Lukey MJ, Parkin A, Roessler MM, Murphy BJ, Harmer J, Palmer T, Sargent F, Armstrong FA.

J Biol Chem. 2010 Feb 5;285(6):3928-38. doi: 10.1074/jbc.M109.067751. Epub 2009 Nov 16. Erratum in: J Biol Chem. 2010 Jun 25;285(26):20421.

45.

Proteolytic processing of Escherichia coli twin-arginine signal peptides by LepB.

Lüke I, Handford JI, Palmer T, Sargent F.

Arch Microbiol. 2009 Dec;191(12):919-25. doi: 10.1007/s00203-009-0516-5. Epub 2009 Oct 7.

PMID:
19809807
46.

Water-gas shift reaction catalyzed by redox enzymes on conducting graphite platelets.

Lazarus O, Woolerton TW, Parkin A, Lukey MJ, Reisner E, Seravalli J, Pierce E, Ragsdale SW, Sargent F, Armstrong FA.

J Am Chem Soc. 2009 Oct 14;131(40):14154-5. doi: 10.1021/ja905797w.

47.

Remnant signal peptides on non-exported enzymes: implications for the evolution of prokaryotic respiratory chains.

Ize B, Coulthurst SJ, Hatzixanthis K, Caldelari I, Buchanan G, Barclay EC, Richardson DJ, Palmer T, Sargent F.

Microbiology. 2009 Dec;155(Pt 12):3992-4004. doi: 10.1099/mic.0.033647-0. Epub 2009 Sep 24.

PMID:
19778964
48.

A genetic analysis of in vivo selenate reduction by Salmonella enterica serovar Typhimurium LT2 and Escherichia coli K12.

Guymer D, Maillard J, Sargent F.

Arch Microbiol. 2009 Jun;191(6):519-28. doi: 10.1007/s00203-009-0478-7. Epub 2009 May 5.

PMID:
19415239
49.

Featuring... Frank Sargent winner of the 2009 FEBS Letters Young Scientist Award. Interview by Daniela Ruffell.

Sargent F.

FEBS Lett. 2009 Jun 5;583(11):1654-5. doi: 10.1016/j.febslet.2009.04.034. Epub 2009 May 4. No abstract available.

50.

The Escherichia coli cell division protein and model Tat substrate SufI (FtsP) localizes to the septal ring and has a multicopper oxidase-like structure.

Tarry M, Arends SJ, Roversi P, Piette E, Sargent F, Berks BC, Weiss DS, Lea SM.

J Mol Biol. 2009 Feb 20;386(2):504-19. doi: 10.1016/j.jmb.2008.12.043. Epub 2008 Dec 25.

Supplemental Content

Loading ...
Support Center