Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 30

1.

Suppression of superoxide production by a spin-spin coupling between semiquinone and the Rieske cluster in cytochrome bc1.

Bujnowicz Ł, Borek A, Kuleta P, Sarewicz M, Osyczka A.

FEBS Lett. 2019 Jan;593(1):3-12. doi: 10.1002/1873-3468.13296. Epub 2018 Dec 3.

PMID:
30428128
2.

Electron sweep across four b-hemes of cytochrome bc1 revealed by unusual paramagnetic properties of the Qi semiquinone intermediate.

Pintscher S, Pietras R, Sarewicz M, Osyczka A.

Biochim Biophys Acta Bioenerg. 2018 Jun;1859(6):459-469. doi: 10.1016/j.bbabio.2018.03.010. Epub 2018 Mar 27.

3.

Generation of semiquinone-[2Fe-2S]+ spin-coupled center at the Qo site of cytochrome bc1 in redox-poised, illuminated photosynthetic membranes from Rhodobacter capsulatus.

Sarewicz M, Bujnowicz Ł, Osyczka A.

Biochim Biophys Acta Bioenerg. 2018 Feb;1859(2):145-153. doi: 10.1016/j.bbabio.2017.11.006. Epub 2017 Nov 24.

4.

Metastable radical state, nonreactive with oxygen, is inherent to catalysis by respiratory and photosynthetic cytochromes bc1/b6f.

Sarewicz M, Bujnowicz Ł, Bhaduri S, Singh SK, Cramer WA, Osyczka A.

Proc Natl Acad Sci U S A. 2017 Feb 7;114(6):1323-1328. doi: 10.1073/pnas.1618840114. Epub 2017 Jan 23.

5.

Pathways of Transmembrane Electron Transfer in Cytochrome bc Complexes: Dielectric Heterogeneity and Interheme Coulombic Interactions.

Bhaduri S, Stadnytskyi V, Zakharov SD, Hasan SS, Bujnowicz Ł, Sarewicz M, Savikhin S, Osyczka A, Cramer WA.

J Phys Chem B. 2017 Feb 9;121(5):975-983. doi: 10.1021/acs.jpcb.6b11709. Epub 2017 Jan 25.

PMID:
28032998
6.

Atomistic determinants of co-enzyme Q reduction at the Qi-site of the cytochrome bc1 complex.

Postila PA, Kaszuba K, Kuleta P, Vattulainen I, Sarewicz M, Osyczka A, Róg T.

Sci Rep. 2016 Sep 26;6:33607. doi: 10.1038/srep33607.

7.

Identifying involvement of Lys251/Asp252 pair in electron transfer and associated proton transfer at the quinone reduction site of Rhodobacter capsulatus cytochrome bc1.

Kuleta P, Sarewicz M, Postila P, Róg T, Osyczka A.

Biochim Biophys Acta. 2016 Oct;1857(10):1661-8. doi: 10.1016/j.bbabio.2016.07.003. Epub 2016 Jul 12.

8.

Distinct properties of semiquinone species detected at the ubiquinol oxidation Qo site of cytochrome bc1 and their mechanistic implications.

Pietras R, Sarewicz M, Osyczka A.

J R Soc Interface. 2016 May;13(118). pii: 20160133. doi: 10.1098/rsif.2016.0133. Review.

9.

Tuning of Hemes b Equilibrium Redox Potential Is Not Required for Cross-Membrane Electron Transfer.

Pintscher S, Kuleta P, Cieluch E, Borek A, Sarewicz M, Osyczka A.

J Biol Chem. 2016 Mar 25;291(13):6872-81. doi: 10.1074/jbc.M115.712307. Epub 2016 Feb 8.

10.
11.

Mitochondrial Disease-related Mutation G167P in Cytochrome b of Rhodobacter capsulatus Cytochrome bc1 (S151P in Human) Affects the Equilibrium Distribution of [2Fe-2S] Cluster and Generation of Superoxide.

Borek A, Kuleta P, Ekiert R, Pietras R, Sarewicz M, Osyczka A.

J Biol Chem. 2015 Sep 25;290(39):23781-92. doi: 10.1074/jbc.M115.661314. Epub 2015 Aug 5.

12.
13.

Hybrid fusions show that inter-monomer electron transfer robustly supports cytochrome bc1 function in vivo.

Ekiert R, Czapla M, Sarewicz M, Osyczka A.

Biochem Biophys Res Commun. 2014 Aug 22;451(2):270-5. doi: 10.1016/j.bbrc.2014.07.117. Epub 2014 Aug 1.

14.

Molecular organization of cytochrome c2 near the binding domain of cytochrome bc1 studied by electron spin-lattice relaxation enhancement.

Pietras R, Sarewicz M, Osyczka A.

J Phys Chem B. 2014 Jun 19;118(24):6634-43. doi: 10.1021/jp503339g. Epub 2014 Jun 5.

15.

[Molecular mechanisms of catalytic reactions and superoxide production by cytochrome bc1 complex].

Pintscher S, Kuleta P, Bujnowicz Ł, Sarewicz M, Osyczka A.

Postepy Biochem. 2014;60(3):285-94. Review. Polish.

PMID:
26263758
16.

Triplet state of the semiquinone-Rieske cluster as an intermediate of electronic bifurcation catalyzed by cytochrome bc1.

Sarewicz M, Dutka M, Pintscher S, Osyczka A.

Biochemistry. 2013 Sep 17;52(37):6388-95. doi: 10.1021/bi400624m. Epub 2013 Sep 4.

17.

Atomistic simulations indicate cardiolipin to have an integral role in the structure of the cytochrome bc1 complex.

Pöyry S, Cramariuc O, Postila PA, Kaszuba K, Sarewicz M, Osyczka A, Vattulainen I, Róg T.

Biochim Biophys Acta. 2013 Jun;1827(6):769-78. doi: 10.1016/j.bbabio.2013.03.005. Epub 2013 Mar 23.

18.

Key role of water in proton transfer at the Qo-site of the cytochrome bc1 complex predicted by atomistic molecular dynamics simulations.

Postila PA, Kaszuba K, Sarewicz M, Osyczka A, Vattulainen I, Róg T.

Biochim Biophys Acta. 2013 Jun;1827(6):761-8. doi: 10.1016/j.bbabio.2013.02.005. Epub 2013 Feb 18.

19.

Catalytically-relevant electron transfer between two hemes bL in the hybrid cytochrome bc1-like complex containing a fusion of Rhodobacter sphaeroides and capsulatus cytochromes b.

Czapla M, Cieluch E, Borek A, Sarewicz M, Osyczka A.

Biochim Biophys Acta. 2013 Jun;1827(6):751-60. doi: 10.1016/j.bbabio.2013.02.007. Epub 2013 Feb 18.

20.

Fusing proteins as an approach to study bioenergetic enzymes and processes.

Czapla M, Sarewicz M, Osyczka A.

Biochim Biophys Acta. 2012 Oct;1817(10):1847-51. doi: 10.1016/j.bbabio.2012.03.024. Epub 2012 Mar 29. Review.

21.

Enzymatic activities of isolated cytochrome bc₁-like complexes containing fused cytochrome b subunits with asymmetrically inactivated segments of electron transfer chains.

Czapla M, Borek A, Sarewicz M, Osyczka A.

Biochemistry. 2012 Jan 31;51(4):829-35. doi: 10.1021/bi2016316. Epub 2012 Jan 17.

22.

Fusing two cytochromes b of Rhodobacter capsulatus cytochrome bc1 using various linkers defines a set of protein templates for asymmetric mutagenesis.

Czapla M, Borek A, Sarewicz M, Osyczka A.

Protein Eng Des Sel. 2012 Jan;25(1):15-25. doi: 10.1093/protein/gzr055. Epub 2011 Nov 25.

23.
24.

An electronic bus bar lies in the core of cytochrome bc1.

Swierczek M, Cieluch E, Sarewicz M, Borek A, Moser CC, Dutton PL, Osyczka A.

Science. 2010 Jul 23;329(5990):451-4. doi: 10.1126/science.1190899.

25.

Discrimination between two possible reaction sequences that create potential risk of generation of deleterious radicals by cytochrome bc₁. Implications for the mechanism of superoxide production.

Sarewicz M, Borek A, Cieluch E, Swierczek M, Osyczka A.

Biochim Biophys Acta. 2010 Nov;1797(11):1820-7. doi: 10.1016/j.bbabio.2010.07.005. Epub 2010 Jul 15.

26.

Visualizing changes in electron distribution in coupled chains of cytochrome bc(1) by modifying barrier for electron transfer between the FeS cluster and heme c(1).

Cieluch E, Pietryga K, Sarewicz M, Osyczka A.

Biochim Biophys Acta. 2010 Feb;1797(2):296-303. doi: 10.1016/j.bbabio.2009.11.003. Epub 2009 Nov 14.

27.

Magnetic interactions sense changes in distance between heme b(L) and the iron-sulfur cluster in cytochrome bc(1).

Sarewicz M, Dutka M, Froncisz W, Osyczka A.

Biochemistry. 2009 Jun 23;48(24):5708-20. doi: 10.1021/bi900511b.

28.

Movement of the iron-sulfur head domain of cytochrome bc(1) transiently opens the catalytic Q(o) site for reaction with oxygen.

Borek A, Sarewicz M, Osyczka A.

Biochemistry. 2008 Nov 25;47(47):12365-70. doi: 10.1021/bi801207f.

PMID:
18956890
29.

Demonstration of short-lived complexes of cytochrome c with cytochrome bc1 by EPR spectroscopy: implications for the mechanism of interprotein electron transfer.

Sarewicz M, Borek A, Daldal F, Froncisz W, Osyczka A.

J Biol Chem. 2008 Sep 5;283(36):24826-36. doi: 10.1074/jbc.M802174200. Epub 2008 Jul 10.

30.

Estimation of binding parameters for the protein-protein interaction using a site-directed spin labeling and EPR spectroscopy.

Sarewicz M, Szytuła S, Dutka M, Osyczka A, Froncisz W.

Eur Biophys J. 2008 Apr;37(4):483-93. Epub 2007 Nov 30.

PMID:
18049817

Supplemental Content

Loading ...
Support Center