Send to

Choose Destination
Ecol Evol. 2018 Apr 30;8(11):5598-5610. doi: 10.1002/ece3.4087. eCollection 2018 Jun.

A land classification protocol for pollinator ecology research: An urbanization case study.

Author information

School of Biological Sciences Royal Holloway University of London Egham UK.


Land-use change is one of the most important drivers of widespread declines in pollinator populations. Comprehensive quantitative methods for land classification are critical to understanding these effects, but co-option of existing human-focussed land classifications is often inappropriate for pollinator research. Here, we present a flexible GIS-based land classification protocol for pollinator research using a bottom-up approach driven by reference to pollinator ecology, with urbanization as a case study. Our multistep method involves manually generating land cover maps at multiple biologically relevant radii surrounding study sites using GIS, with a focus on identifying land cover types that have a specific relevance to pollinators. This is followed by a three-step refinement process using statistical tools: (i) definition of land-use categories, (ii) principal components analysis on the categories, and (iii) cluster analysis to generate a categorical land-use variable for use in subsequent analysis. Model selection is then used to determine the appropriate spatial scale for analysis. We demonstrate an application of our protocol using a case study of 38 sites across a gradient of urbanization in South-East England. In our case study, the land classification generated a categorical land-use variable at each of four radii based on the clustering of sites with different degrees of urbanization, open land, and flower-rich habitat. Studies of land-use effects on pollinators have historically employed a wide array of land classification techniques from descriptive and qualitative to complex and quantitative. We suggest that land-use studies in pollinator ecology should broadly adopt GIS-based multistep land classification techniques to enable robust analysis and aid comparative research. Our protocol offers a customizable approach that combines specific relevance to pollinator research with the potential for application to a wide range of ecological questions, including agroecological studies of pest control.


GIS; agricultural pest control; anthropogenic stressors; bees; land classification; land‐use change; pollinator; urbanization

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center