Sort by
Items per page

Send to

Choose Destination

Search results

Items: 43


Cryptic phenology in plants: Case studies, implications, and recommendations.

Albert LP, Restrepo-Coupe N, Smith MN, Wu J, Chavana-Bryant C, Prohaska N, Taylor TC, Martins GA, Ciais P, Mao J, Arain MA, Li W, Shi X, Ricciuto DM, Huxman TE, McMahon SM, Saleska SR.

Glob Chang Biol. 2019 Jul 25. doi: 10.1111/gcb.14759. [Epub ahead of print] Review.


Leaf reflectance spectroscopy captures variation in carboxylation capacity across species, canopy environment and leaf age in lowland moist tropical forests.

Wu J, Rogers A, Albert LP, Ely K, Prohaska N, Wolfe BT, Oliveira RC Jr, Saleska SR, Serbin SP.

New Phytol. 2019 Jun 27. doi: 10.1111/nph.16029. [Epub ahead of print]


Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niño-induced drought.

Barros FV, Bittencourt PRL, Brum M, Restrepo-Coupe N, Pereira L, Teodoro GS, Saleska SR, Borma LS, Christoffersen BO, Penha D, Alves LF, Lima AJN, Carneiro VMC, Gentine P, Lee JE, Aragão LEOC, Ivanov V, Leal LSM, Araujo AC, Oliveira RS.

New Phytol. 2019 Aug;223(3):1253-1266. doi: 10.1111/nph.15909. Epub 2019 Jun 21.


Seasonal and drought-related changes in leaf area profiles depend on height and light environment in an Amazon forest.

Smith MN, Stark SC, Taylor TC, Ferreira ML, de Oliveira E, Restrepo-Coupe N, Chen S, Woodcock T, Dos Santos DB, Alves LF, Figueira M, de Camargo PB, de Oliveira RC, Aragão LEOC, Falk DA, McMahon SM, Huxman TE, Saleska SR.

New Phytol. 2019 May;222(3):1284-1297. doi: 10.1111/nph.15726. Epub 2019 Mar 9.


Discovery and ecogenomic context of a global Caldiserica-related phylum active in thawing permafrost, Candidatus Cryosericota phylum nov., Ca. Cryosericia class nov., Ca. Cryosericales ord. nov., Ca. Cryosericaceae fam. nov., comprising the four species Cryosericum septentrionale gen. nov. sp. nov., Ca. C. hinesii sp. nov., Ca. C. odellii sp. nov., Ca. C. terrychapinii sp. nov.

Martinez MA, Woodcroft BJ, Ignacio Espinoza JC, Zayed AA, Singleton CM, Boyd JA, Li YF, Purvine S, Maughan H, Hodgkins SB, Anderson D, Sederholm M, Temperton B, Bolduc B, Saleska SR, Tyson GW, Rich VI; IsoGenie Project Coordinators, Saleska SR, Tyson GW, Rich VI.

Syst Appl Microbiol. 2019 Jan;42(1):54-66. doi: 10.1016/j.syapm.2018.12.003. Epub 2018 Dec 14.


Soil Viruses Are Underexplored Players in Ecosystem Carbon Processing.

Trubl G, Jang HB, Roux S, Emerson JB, Solonenko N, Vik DR, Solden L, Ellenbogen J, Runyon AT, Bolduc B, Woodcroft BJ, Saleska SR, Tyson GW, Wrighton KC, Sullivan MB, Rich VI.

mSystems. 2018 Oct 2;3(5). pii: e00076-18. doi: 10.1128/mSystems.00076-18. eCollection 2018 Sep-Oct.


Host-linked soil viral ecology along a permafrost thaw gradient.

Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ, Jang HB, Singleton CM, Solden LM, Naas AE, Boyd JA, Hodgkins SB, Wilson RM, Trubl G, Li C, Frolking S, Pope PB, Wrighton KC, Crill PM, Chanton JP, Saleska SR, Tyson GW, Rich VI, Sullivan MB.

Nat Microbiol. 2018 Aug;3(8):870-880. doi: 10.1038/s41564-018-0190-y. Epub 2018 Jul 16.


Genome-centric view of carbon processing in thawing permafrost.

Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, Hoelzle RD, Lamberton TO, McCalley CK, Hodgkins SB, Wilson RM, Purvine SO, Nicora CD, Li C, Frolking S, Chanton JP, Crill PM, Saleska SR, Rich VI, Tyson GW.

Nature. 2018 Aug;560(7716):49-54. doi: 10.1038/s41586-018-0338-1. Epub 2018 Jul 16.


Isoprene emission structures tropical tree biogeography and community assembly responses to climate.

Taylor TC, McMahon SM, Smith MN, Boyle B, Violle C, van Haren J, Simova I, Meir P, Ferreira LV, de Camargo PB, da Costa ACL, Enquist BJ, Saleska SR.

New Phytol. 2018 Oct;220(2):435-446. doi: 10.1111/nph.15304. Epub 2018 Jul 4.


Methanotrophy across a natural permafrost thaw environment.

Singleton CM, McCalley CK, Woodcroft BJ, Boyd JA, Evans PN, Hodgkins SB, Chanton JP, Frolking S, Crill PM, Saleska SR, Rich VI, Tyson GW.

ISME J. 2018 Oct;12(10):2544-2558. doi: 10.1038/s41396-018-0065-5. Epub 2018 Jun 28.


Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts.

Longo M, Knox RG, Levine NM, Alves LF, Bonal D, Camargo PB, Fitzjarrald DR, Hayek MN, Restrepo-Coupe N, Saleska SR, da Silva R, Stark SC, Tapajós RP, Wiedemann KT, Zhang K, Wofsy SC, Moorcroft PR.

New Phytol. 2018 Aug;219(3):914-931. doi: 10.1111/nph.15185. Epub 2018 May 22.


Causes of reduced leaf-level photosynthesis during strong El Niño drought in a Central Amazon forest.

Santos VAHFD, Ferreira MJ, Rodrigues JVFC, Garcia MN, Ceron JVB, Nelson BW, Saleska SR.

Glob Chang Biol. 2018 Sep;24(9):4266-4279. doi: 10.1111/gcb.14293. Epub 2018 May 30.


Hydraulic redistribution affects modeled carbon cycling via soil microbial activity and suppressed fire.

Fu C, Wang G, Bible K, Goulden ML, Saleska SR, Scott RL, Cardon ZG.

Glob Chang Biol. 2018 Aug;24(8):3472-3485. doi: 10.1111/gcb.14164. Epub 2018 May 16.


Age-dependent leaf physiology and consequences for crown-scale carbon uptake during the dry season in an Amazon evergreen forest.

Albert LP, Wu J, Prohaska N, de Camargo PB, Huxman TE, Tribuzy ES, Ivanov VY, Oliveira RS, Garcia S, Smith MN, Oliveira Junior RC, Restrepo-Coupe N, da Silva R, Stark SC, Martins GA, Penha DV, Saleska SR.

New Phytol. 2018 Aug;219(3):870-884. doi: 10.1111/nph.15056. Epub 2018 Mar 4.


Biological processes dominate seasonality of remotely sensed canopy greenness in an Amazon evergreen forest.

Wu J, Kobayashi H, Stark SC, Meng R, Guan K, Tran NN, Gao S, Yang W, Restrepo-Coupe N, Miura T, Oliviera RC, Rogers A, Dye DG, Nelson BW, Serbin SP, Huete AR, Saleska SR.

New Phytol. 2018 Mar;217(4):1507-1520. doi: 10.1111/nph.14939. Epub 2017 Dec 23.


Variations of leaf longevity in tropical moist forests predicted by a trait-driven carbon optimality model.

Xu X, Medvigy D, Joseph Wright S, Kitajima K, Wu J, Albert LP, Martins GA, Saleska SR, Pacala SW.

Ecol Lett. 2017 Sep;20(9):1097-1106. doi: 10.1111/ele.12804. Epub 2017 Jul 4.


Microbial network, phylogenetic diversity and community membership in the active layer across a permafrost thaw gradient.

Mondav R, McCalley CK, Hodgkins SB, Frolking S, Saleska SR, Rich VI, Chanton JP, Crill PM.

Environ Microbiol. 2017 Aug;19(8):3201-3218. doi: 10.1111/1462-2920.13809. Epub 2017 Jul 13.


Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees.

Powell TL, Wheeler JK, de Oliveira AAR, da Costa ACL, Saleska SR, Meir P, Moorcroft PR.

Glob Chang Biol. 2017 Oct;23(10):4280-4293. doi: 10.1111/gcb.13731. Epub 2017 May 29.


The phenology of leaf quality and its within-canopy variation is essential for accurate modeling of photosynthesis in tropical evergreen forests.

Wu J, Serbin SP, Xu X, Albert LP, Chen M, Meng R, Saleska SR, Rogers A.

Glob Chang Biol. 2017 Nov;23(11):4814-4827. doi: 10.1111/gcb.13725. Epub 2017 May 26.


Synergistic Ecoclimate Teleconnections from Forest Loss in Different Regions Structure Global Ecological Responses.

Garcia ES, Swann AL, Villegas JC, Breshears DD, Law DJ, Saleska SR, Stark SC.

PLoS One. 2016 Nov 16;11(11):e0165042. doi: 10.1371/journal.pone.0165042. eCollection 2016.


Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales.

Wu J, Guan K, Hayek M, Restrepo-Coupe N, Wiedemann KT, Xu X, Wehr R, Christoffersen BO, Miao G, da Silva R, de Araujo AC, Oliviera RC, Camargo PB, Monson RK, Huete AR, Saleska SR.

Glob Chang Biol. 2017 Mar;23(3):1240-1257. doi: 10.1111/gcb.13509. Epub 2016 Oct 11.


Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison.

Restrepo-Coupe N, Levine NM, Christoffersen BO, Albert LP, Wu J, Costa MH, Galbraith D, Imbuzeiro H, Martins G, da Araujo AC, Malhi YS, Zeng X, Moorcroft P, Saleska SR.

Glob Chang Biol. 2017 Jan;23(1):191-208. doi: 10.1111/gcb.13442. Epub 2016 Aug 29.


Convergence in relationships between leaf traits, spectra and age across diverse canopy environments and two contrasting tropical forests.

Wu J, Chavana-Bryant C, Prohaska N, Serbin SP, Guan K, Albert LP, Yang X, van Leeuwen WJ, Garnello AJ, Martins G, Malhi Y, Gerard F, Oliviera RC, Saleska SR.

New Phytol. 2017 May;214(3):1033-1048. doi: 10.1111/nph.14051. Epub 2016 Jul 6.


Seasonality of temperate forest photosynthesis and daytime respiration.

Wehr R, Munger JW, McManus JB, Nelson DD, Zahniser MS, Davidson EA, Wofsy SC, Saleska SR.

Nature. 2016 Jun 30;534(7609):680-3. doi: 10.1038/nature17966.


Dry-season greening of Amazon forests.

Saleska SR, Wu J, Guan K, Araujo AC, Huete A, Nobre AD, Restrepo-Coupe N.

Nature. 2016 Mar 17;531(7594):E4-5. doi: 10.1038/nature16457. No abstract available.


Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests.

Wu J, Albert LP, Lopes AP, Restrepo-Coupe N, Hayek M, Wiedemann KT, Guan K, Stark SC, Christoffersen B, Prohaska N, Tavares JV, Marostica S, Kobayashi H, Ferreira ML, Campos KS, da Silva R, Brando PM, Dye DG, Huxman TE, Huete AR, Nelson BW, Saleska SR.

Science. 2016 Feb 26;351(6276):972-6. doi: 10.1126/science.aad5068.


Leaf aging of Amazonian canopy trees as revealed by spectral and physiochemical measurements.

Chavana-Bryant C, Malhi Y, Wu J, Asner GP, Anastasiou A, Enquist BJ, Cosio Caravasi EG, Doughty CE, Saleska SR, Martin RE, Gerard FF.

New Phytol. 2017 May;214(3):1049-1063. doi: 10.1111/nph.13853. Epub 2016 Feb 15.


Linking canopy leaf area and light environments with tree size distributions to explain Amazon forest demography.

Stark SC, Enquist BJ, Saleska SR, Leitold V, Schietti J, Longo M, Alves LF, Camargo PB, Oliveira RC.

Ecol Lett. 2015 Jul;18(7):636-45. doi: 10.1111/ele.12440. Epub 2015 May 11.


Methane dynamics regulated by microbial community response to permafrost thaw.

McCalley CK, Woodcroft BJ, Hodgkins SB, Wehr RA, Kim EH, Mondav R, Crill PM, Chanton JP, Rich VI, Tyson GW, Saleska SR.

Nature. 2014 Oct 23;514(7523):478-81. doi: 10.1038/nature13798.


Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production.

Hodgkins SB, Tfaily MM, McCalley CK, Logan TA, Crill PM, Saleska SR, Rich VI, Chanton JP.

Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):5819-24. doi: 10.1073/pnas.1314641111. Epub 2014 Apr 7.


Discovery of a novel methanogen prevalent in thawing permafrost.

Mondav R, Woodcroft BJ, Kim EH, McCalley CK, Hodgkins SB, Crill PM, Chanton J, Hurst GB, VerBerkmoes NC, Saleska SR, Hugenholtz P, Rich VI, Tyson GW.

Nat Commun. 2014;5:3212. doi: 10.1038/ncomms4212.


Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought.

Powell TL, Galbraith DR, Christoffersen BO, Harper A, Imbuzeiro HM, Rowland L, Almeida S, Brando PM, da Costa AC, Costa MH, Levine NM, Malhi Y, Saleska SR, Sotta E, Williams M, Meir P, Moorcroft PR.

New Phytol. 2013 Oct;200(2):350-65. doi: 10.1111/nph.12390. Epub 2013 Jul 12.


Deforestation and climate feedbacks threaten the ecological integrity of south-southeastern Amazonia.

Coe MT, Marthews TR, Costa MH, Galbraith DR, Greenglass NL, Imbuzeiro HM, Levine NM, Malhi Y, Moorcroft PR, Muza MN, Powell TL, Saleska SR, Solorzano LA, Wang J.

Philos Trans R Soc Lond B Biol Sci. 2013 Apr 22;368(1619):20120155. doi: 10.1098/rstb.2012.0155. Print 2013 Jun 5.


Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment.

Stark SC, Leitold V, Wu JL, Hunter MO, de Castilho CV, Costa FR, McMahon SM, Parker GG, Shimabukuro MT, Lefsky MA, Keller M, Alves LF, Schietti J, Shimabukuro YE, Brandão DO, Woodcock TK, Higuchi N, de Camargo PB, de Oliveira RC, Saleska SR, Chave J.

Ecol Lett. 2012 Dec;15(12):1406-14. doi: 10.1111/j.1461-0248.2012.01864.x. Epub 2012 Sep 20.


Reduced impact logging minimally alters tropical rainforest carbon and energy exchange.

Miller SD, Goulden ML, Hutyra LR, Keller M, Saleska SR, Wofsy SC, Figueira AM, da Rocha HR, de Camargo PB.

Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19431-5. doi: 10.1073/pnas.1105068108. Epub 2011 Nov 15.


Variations in Amazon forest productivity correlated with foliar nutrients and modelled rates of photosynthetic carbon supply.

Mercado LM, Patiño S, Domingues TF, Fyllas NM, Weedon GP, Sitch S, Quesada CA, Phillips OL, Aragão LE, Malhi Y, Dolman AJ, Restrepo-Coupe N, Saleska SR, Baker TR, Almeida S, Higuchi N, Lloyd J.

Philos Trans R Soc Lond B Biol Sci. 2011 Nov 27;366(1582):3316-29. doi: 10.1098/rstb.2011.0045.


Gas phase measurements of pyruvic acid and its volatile metabolites.

Jardine KJ, Sommer ED, Saleska SR, Huxman TE, Harley PC, Abrell L.

Environ Sci Technol. 2010 Apr 1;44(7):2454-60. doi: 10.1021/es903544p.


Amazon forests green-up during 2005 drought.

Saleska SR, Didan K, Huete AR, da Rocha HR.

Science. 2007 Oct 26;318(5850):612. Epub 2007 Sep 20.


What are the instrumentation requirements for measuring the isotopic composition of net ecosystem exchange of CO2 using eddy covariance methods?

Saleska SR, Shorter JH, Herndon S, Jiménez R, McManus JB, Munger JW, Nelson DD, Zahniser MS.

Isotopes Environ Health Stud. 2006 Jun;42(2):115-33.


Woody debris contribution to the carbon budget of selectively logged and maturing mid-latitude forests.

Liu WH, Bryant DM, Hutyra LR, Saleska SR, Hammond-Pyle E, Curran D, Wofsy SC.

Oecologia. 2006 May;148(1):108-17. Epub 2006 Feb 4.


Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses.

Saleska SR, Miller SD, Matross DM, Goulden ML, Wofsy SC, da Rocha HR, de Camargo PB, Crill P, Daube BC, de Freitas HC, Hutyra L, Keller M, Kirchhoff V, Menton M, Munger JW, Pyle EH, Rice AH, Silva H.

Science. 2003 Nov 28;302(5650):1554-7.


Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest.

Barford CC, Wofsy SC, Goulden ML, Munger JW, Pyle EH, Urbanski SP, Hutyra L, Saleska SR, Fitzjarrald D, Moore K.

Science. 2001 Nov 23;294(5547):1688-91.

Supplemental Content

Loading ...
Support Center