Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 358

1.

YAP-dependent necrosis occurs in early stages of Alzheimer's disease and regulates mouse model pathology.

Tanaka H, Homma H, Fujita K, Kondo K, Yamada S, Jin X, Waragai M, Ohtomo G, Iwata A, Tagawa K, Atsuta N, Katsuno M, Tomita N, Furukawa K, Saito Y, Saito T, Ichise A, Shibata S, Arai H, Saido T, Sudol M, Muramatsu SI, Okano H, Mufson EJ, Sobue G, Murayama S, Okazawa H.

Nat Commun. 2020 Jan 24;11(1):507. doi: 10.1038/s41467-020-14353-6.

2.

β-amyloid redirects norepinephrine signaling to activate the pathogenic GSK3β/tau cascade.

Zhang F, Gannon M, Chen Y, Yan S, Zhang S, Feng W, Tao J, Sha B, Liu Z, Saito T, Saido T, Keene CD, Jiao K, Roberson ED, Xu H, Wang Q.

Sci Transl Med. 2020 Jan 15;12(526). pii: eaay6931. doi: 10.1126/scitranslmed.aay6931.

PMID:
31941827
3.

Nrf2 Suppresses Oxidative Stress and Inflammation in App Knock-in Alzheimer's Disease Model Mice.

Uruno A, Matsumaru D, Ryoke R, Saito R, Kadoguchi S, Saigusa D, Saito T, Saido TC, Kawashima R, Yamamoto M.

Mol Cell Biol. 2020 Jan 13. pii: MCB.00467-19. doi: 10.1128/MCB.00467-19. [Epub ahead of print]

PMID:
31932477
4.

Contribution of GABAergic interneurons to amyloid-β plaque pathology in an APP knock-in mouse model.

Rice HC, Marcassa G, Chrysidou I, Horré K, Young-Pearse TL, Müller UC, Saito T, Saido TC, Vassar R, de Wit J, De Strooper B.

Mol Neurodegener. 2020 Jan 8;15(1):3. doi: 10.1186/s13024-019-0356-y.

5.

Increased levels of Aβ42 decrease the lifespan of ob/ob mice with dysregulation of microglia and astrocytes.

Shinohara M, Tashiro Y, Shinohara M, Hirokawa J, Suzuki K, Onishi-Takeya M, Mukouzono M, Takeda S, Saito T, Fukumori A, Saido TC, Morishita R, Sato N.

FASEB J. 2020 Feb;34(2):2425-2435. doi: 10.1096/fj.201901028RR. Epub 2019 Dec 16.

PMID:
31907998
6.

Biology of splicing in Alzheimer's disease research.

Nagata K, Saito T, Saido TC, Morihara T.

Prog Mol Biol Transl Sci. 2019;168:79-84. doi: 10.1016/bs.pmbts.2019.08.003. Epub 2019 Oct 17.

PMID:
31699329
7.

ABCA7 haplodeficiency disturbs microglial immune responses in the mouse brain.

Aikawa T, Ren Y, Yamazaki Y, Tachibana M, Johnson MR, Anderson CT, Martens YA, Holm ML, Asmann YW, Saito T, Saido TC, Fitzgerald ML, Bu G, Kanekiyo T.

Proc Natl Acad Sci U S A. 2019 Nov 19;116(47):23790-23796. doi: 10.1073/pnas.1908529116. Epub 2019 Nov 5.

PMID:
31690660
8.

Network-guided analysis of hippocampal proteome identifies novel proteins that colocalize with Aβ in a mice model of early-stage Alzheimer's disease.

Aladeokin AC, Akiyama T, Kimura A, Kimura Y, Takahashi-Jitsuki A, Nakamura H, Makihara H, Masukawa D, Nakabayashi J, Hirano H, Nakamura F, Saito T, Saido T, Goshima Y.

Neurobiol Dis. 2019 Dec;132:104603. doi: 10.1016/j.nbd.2019.104603. Epub 2019 Sep 5.

9.

An impaired intrinsic microglial clock system induces neuroinflammatory alterations in the early stage of amyloid precursor protein knock-in mouse brain.

Ni J, Wu Z, Meng J, Saito T, Saido TC, Qing H, Nakanishi H.

J Neuroinflammation. 2019 Aug 30;16(1):173. doi: 10.1186/s12974-019-1562-9.

10.

Inhibition of p38 MAPK in the brain through nasal administration of p38 inhibitor loaded in chitosan nanocapsules.

Casadomé-Perales Á, Matteis L, Alleva M, Infantes-Rodríguez C, Palomares-Pérez I, Saito T, Saido TC, Esteban JA, Nebreda AR, de la Fuente JM, Dotti CG.

Nanomedicine (Lond). 2019 Sep;14(18):2409-2422. doi: 10.2217/nnm-2018-0496. Epub 2019 Aug 28.

PMID:
31456488
11.

Insoluble Aβ overexpression in an App knock-in mouse model alters microstructure and gamma oscillations in the prefrontal cortex, affecting anxiety-related behaviours.

Pervolaraki E, Hall SP, Foresteire D, Saito T, Saido TC, Whittington MA, Lever C, Dachtler J.

Dis Model Mech. 2019 Sep 24;12(9). pii: dmm040550. doi: 10.1242/dmm.040550.

12.

Serine Phosphorylation of IRS1 Correlates with Aβ-Unrelated Memory Deficits and Elevation in Aβ Level Prior to the Onset of Memory Decline in AD.

Wang W, Tanokashira D, Fukui Y, Maruyama M, Kuroiwa C, Saito T, Saido TC, Taguchi A.

Nutrients. 2019 Aug 17;11(8). pii: E1942. doi: 10.3390/nu11081942.

13.

Longitudinal PET Monitoring of Amyloidosis and Microglial Activation in a Second-Generation Amyloid-β Mouse Model.

Sacher C, Blume T, Beyer L, Peters F, Eckenweber F, Sgobio C, Deussing M, Albert NL, Unterrainer M, Lindner S, Gildehaus FJ, von Ungern-Sternberg B, Brzak I, Neumann U, Saito T, Saido TC, Bartenstein P, Rominger A, Herms J, Brendel M.

J Nucl Med. 2019 Dec;60(12):1787-1793. doi: 10.2967/jnumed.119.227322. Epub 2019 Jul 13.

PMID:
31302633
14.

Temporal progression of Alzheimer's disease in brains and intestines of transgenic mice.

Manocha GD, Floden AM, Miller NM, Smith AJ, Nagamoto-Combs K, Saito T, Saido TC, Combs CK.

Neurobiol Aging. 2019 Sep;81:166-176. doi: 10.1016/j.neurobiolaging.2019.05.025. Epub 2019 Jun 13.

PMID:
31284126
15.

Humanization of the entire murine Mapt gene provides a murine model of pathological human tau propagation.

Saito T, Mihira N, Matsuba Y, Sasaguri H, Hashimoto S, Narasimhan S, Zhang B, Murayama S, Higuchi M, Lee VMY, Trojanowski JQ, Saido TC.

J Biol Chem. 2019 Aug 23;294(34):12754-12765. doi: 10.1074/jbc.RA119.009487. Epub 2019 Jul 4.

PMID:
31273083
16.

Author Correction: Tau binding protein CAPON induces tau aggregation and neurodegeneration.

Hashimoto S, Matsuba Y, Kamano N, Mihira N, Sahara N, Takano J, Muramatsu SI, Saido TC, Saito T.

Nat Commun. 2019 Jul 1;10(1):2964. doi: 10.1038/s41467-019-10990-8.

17.

Amyloid β oligomers constrict human capillaries in Alzheimer's disease via signaling to pericytes.

Nortley R, Korte N, Izquierdo P, Hirunpattarasilp C, Mishra A, Jaunmuktane Z, Kyrargyri V, Pfeiffer T, Khennouf L, Madry C, Gong H, Richard-Loendt A, Huang W, Saito T, Saido TC, Brandner S, Sethi H, Attwell D.

Science. 2019 Jul 19;365(6450). pii: eaav9518. doi: 10.1126/science.aav9518. Epub 2019 Jun 20.

18.

An App knock-in mouse inducing the formation of a toxic conformer of Aβ as a model for evaluating only oligomer-induced cognitive decline in Alzheimer's disease.

Izuo N, Murakami K, Fujihara Y, Maeda M, Saito T, Saido TC, Irie K, Shimizu T.

Biochem Biophys Res Commun. 2019 Jul 30;515(3):462-467. doi: 10.1016/j.bbrc.2019.05.131. Epub 2019 Jun 1.

PMID:
31164199
19.

Tau binding protein CAPON induces tau aggregation and neurodegeneration.

Hashimoto S, Matsuba Y, Kamano N, Mihira N, Sahara N, Takano J, Muramatsu SI, Saido TC, Saito T.

Nat Commun. 2019 Jun 3;10(1):2394. doi: 10.1038/s41467-019-10278-x. Erratum in: Nat Commun. 2019 Jul 1;10(1):2964.

20.

AppNL-G-F/NL-G-F mice overall do not show impaired motivation, but cored amyloid plaques in the striatum are inversely correlated with motivation.

Hamaguchi T, Tsutsui-Kimura I, Mimura M, Saito T, Saido TC, Tanaka KF.

Neurochem Int. 2019 Oct;129:104470. doi: 10.1016/j.neuint.2019.104470. Epub 2019 May 16.

PMID:
31102607
21.

Aminophospholipids are signal-transducing TREM2 ligands on apoptotic cells.

Shirotani K, Hori Y, Yoshizaki R, Higuchi E, Colonna M, Saito T, Hashimoto S, Saito T, Saido TC, Iwata N.

Sci Rep. 2019 May 17;9(1):7508. doi: 10.1038/s41598-019-43535-6.

22.

The Major Risk Factors for Alzheimer's Disease: Age, Sex, and Genes Modulate the Microglia Response to Aβ Plaques.

Sala Frigerio C, Wolfs L, Fattorelli N, Thrupp N, Voytyuk I, Schmidt I, Mancuso R, Chen WT, Woodbury ME, Srivastava G, Möller T, Hudry E, Das S, Saido T, Karran E, Hyman B, Perry VH, Fiers M, De Strooper B.

Cell Rep. 2019 Apr 23;27(4):1293-1306.e6. doi: 10.1016/j.celrep.2019.03.099.

23.

SIRT3 mediates hippocampal synaptic adaptations to intermittent fasting and ameliorates deficits in APP mutant mice.

Liu Y, Cheng A, Li YJ, Yang Y, Kishimoto Y, Zhang S, Wang Y, Wan R, Raefsky SM, Lu D, Saito T, Saido T, Zhu J, Wu LJ, Mattson MP.

Nat Commun. 2019 Apr 23;10(1):1886. doi: 10.1038/s41467-019-09897-1.

24.

GABARAPs dysfunction by autophagy deficiency in adolescent brain impairs GABAA receptor trafficking and social behavior.

Hui KK, Takashima N, Watanabe A, Chater TE, Matsukawa H, Nekooki-Machida Y, Nilsson P, Endo R, Goda Y, Saido TC, Yoshikawa T, Tanaka M.

Sci Adv. 2019 Apr 10;5(4):eaau8237. doi: 10.1126/sciadv.aau8237. eCollection 2019 Apr.

25.

Amyloid-β plaque formation and reactive gliosis are required for induction of cognitive deficits in App knock-in mouse models of Alzheimer's disease.

Sakakibara Y, Sekiya M, Saito T, Saido TC, Iijima KM.

BMC Neurosci. 2019 Mar 20;20(1):13. doi: 10.1186/s12868-019-0496-6.

26.

Reducing ADAMTS-3 Inhibits Amyloid β Deposition in App Knock-in Mouse.

Yamakage Y, Tsuiji H, Kohno T, Ogino H, Saito T, Saido TC, Hattori M.

Biol Pharm Bull. 2019;42(3):354-356. doi: 10.1248/bpb.b18-00899.

27.

Aberrant Excitatory-Inhibitory Synaptic Mechanisms in Entorhinal Cortex Microcircuits During the Pathogenesis of Alzheimer's Disease.

Petrache AL, Rajulawalla A, Shi A, Wetzel A, Saito T, Saido TC, Harvey K, Ali AB.

Cereb Cortex. 2019 Apr 1;29(4):1834-1850. doi: 10.1093/cercor/bhz016.

28.

Correction: T-type calcium channel enhancer SAK3 promotes dopamine and serotonin releases in the hippocampus in naive and amyloid precursor protein knock-in mice.

Wang S, Yabuki Y, Matsuo K, Xu J, Izumi H, Sakimura K, Saito T, Saido TC, Fukunaga K.

PLoS One. 2019 Jan 25;14(1):e0211590. doi: 10.1371/journal.pone.0211590. eCollection 2019.

29.

T-type calcium channel enhancer SAK3 promotes dopamine and serotonin releases in the hippocampus in naive and amyloid precursor protein knock-in mice.

Wang S, Yabuki Y, Matsuo K, Xu J, Izumi H, Sakimura K, Saito T, Saido TC, Fukunaga K.

PLoS One. 2018 Dec 20;13(12):e0206986. doi: 10.1371/journal.pone.0206986. eCollection 2018. Erratum in: PLoS One. 2019 Jan 25;14(1):e0211590.

30.

Neuroinflammation in mouse models of Alzheimer's disease.

Saito T, Saido TC.

Clin Exp Neuroimmunol. 2018 Nov;9(4):211-218. doi: 10.1111/cen3.12475. Epub 2018 Sep 23. Review.

31.

Transmission of amyloid-β protein pathology from cadaveric pituitary growth hormone.

Purro SA, Farrow MA, Linehan J, Nazari T, Thomas DX, Chen Z, Mengel D, Saito T, Saido T, Rudge P, Brandner S, Walsh DM, Collinge J.

Nature. 2018 Dec;564(7736):415-419. doi: 10.1038/s41586-018-0790-y. Epub 2018 Dec 13.

32.

New Insights of a Neuronal Peptidase DINE/ECEL1: Nerve Development, Nerve Regeneration and Neurogenic Pathogenesis.

Kiryu-Seo S, Nagata K, Saido TC, Kiyama H.

Neurochem Res. 2019 Jun;44(6):1279-1288. doi: 10.1007/s11064-018-2665-x. Epub 2018 Oct 24. Review.

PMID:
30357652
33.

Increased Insoluble Amyloid-β Induces Negligible Cognitive Deficits in Old AppNL/NL Knock-In Mice.

Salas IH, Callaerts-Vegh Z, D'Hooge R, Saido TC, Dotti CG, De Strooper B.

J Alzheimers Dis. 2018;66(2):801-809. doi: 10.3233/JAD-180410.

34.

The intellectual disability gene PQBP1 rescues Alzheimer's disease pathology.

Tanaka H, Kondo K, Chen X, Homma H, Tagawa K, Kerever A, Aoki S, Saito T, Saido T, Muramatsu SI, Fujita K, Okazawa H.

Mol Psychiatry. 2018 Oct;23(10):2090-2110. doi: 10.1038/s41380-018-0253-8. Epub 2018 Oct 3.

35.

Novel Quantitative Analyses of Spontaneous Synaptic Events in Cortical Pyramidal Cells Reveal Subtle Parvalbumin-Expressing Interneuron Dysfunction in a Knock-In Mouse Model of Alzheimer's Disease.

Chen L, Saito T, Saido TC, Mody I.

eNeuro. 2018 Aug 13;5(4). pii: ENEURO.0059-18.2018. doi: 10.1523/ENEURO.0059-18.2018. eCollection 2018 Jul-Aug.

36.

Looking beyond the standard version of the Morris water task in the assessment of mouse models of cognitive deficits.

Mehla J, Deibel SH, Faraji J, Saito T, Saido TC, Mohajerani MH, McDonald RJ.

Hippocampus. 2019 Jan;29(1):3-14. doi: 10.1002/hipo.22999. Epub 2018 Nov 11.

PMID:
30069957
37.

Cognitive and emotional alterations in App knock-in mouse models of Aβ amyloidosis.

Sakakibara Y, Sekiya M, Saito T, Saido TC, Iijima KM.

BMC Neurosci. 2018 Jul 28;19(1):46. doi: 10.1186/s12868-018-0446-8.

38.

Introduction of pathogenic mutations into the mouse Psen1 gene by Base Editor and Target-AID.

Sasaguri H, Nagata K, Sekiguchi M, Fujioka R, Matsuba Y, Hashimoto S, Sato K, Kurup D, Yokota T, Saido TC.

Nat Commun. 2018 Jul 24;9(1):2892. doi: 10.1038/s41467-018-05262-w.

39.

Concurrent cell type-specific isolation and profiling of mouse brains in inflammation and Alzheimer's disease.

Swartzlander DB, Propson NE, Roy ER, Saito T, Saido T, Wang B, Zheng H.

JCI Insight. 2018 Jul 12;3(13). pii: 121109. doi: 10.1172/jci.insight.121109.

40.

Circadian and Brain State Modulation of Network Hyperexcitability in Alzheimer's Disease.

Brown R, Lam AD, Gonzalez-Sulser A, Ying A, Jones M, Chou RC, Tzioras M, Jordan CY, Jedrasiak-Cape I, Hemonnot AL, Abou Jaoude M, Cole AJ, Cash SS, Saito T, Saido T, Ribchester RR, Hashemi K, Oren I.

eNeuro. 2018 May 17;5(2). pii: ENEURO.0426-17.2018. doi: 10.1523/ENEURO.0426-17.2018. eCollection 2018 Mar-Apr.

41.

Generation of App knock-in mice reveals deletion mutations protective against Alzheimer's disease-like pathology.

Nagata K, Takahashi M, Matsuba Y, Okuyama-Uchimura F, Sato K, Hashimoto S, Saito T, Saido TC.

Nat Commun. 2018 May 4;9(1):1800. doi: 10.1038/s41467-018-04238-0.

42.

Critical review: involvement of endoplasmic reticulum stress in the aetiology of Alzheimer's disease.

Hashimoto S, Saido TC.

Open Biol. 2018 Apr;8(4). pii: 180024. doi: 10.1098/rsob.180024. Review.

43.

Spatial reversal learning defect coincides with hypersynchronous telencephalic BOLD functional connectivity in APPNL-F/NL-F knock-in mice.

Shah D, Latif-Hernandez A, De Strooper B, Saito T, Saido T, Verhoye M, D'Hooge R, Van der Linden A.

Sci Rep. 2018 Apr 19;8(1):6264. doi: 10.1038/s41598-018-24657-9.

44.

Targeting Alzheimer's disease with gene and cell therapies.

Loera-Valencia R, Piras A, Ismail MAM, Manchanda S, Eyjolfsdottir H, Saido TC, Johansson J, Eriksdotter M, Winblad B, Nilsson P.

J Intern Med. 2018 Jul;284(1):2-36. doi: 10.1111/joim.12759. Review.

PMID:
29582495
45.

The Disease-modifying Drug Candidate, SAK3 Improves Cognitive Impairment and Inhibits Amyloid beta Deposition in App Knock-in Mice.

Izumi H, Shinoda Y, Saito T, Saido TC, Sato K, Yabuki Y, Matsumoto Y, Kanemitsu Y, Tomioka Y, Abolhassani N, Nakabeppu Y, Fukunaga K.

Neuroscience. 2018 May 1;377:87-97. doi: 10.1016/j.neuroscience.2018.02.031. Epub 2018 Mar 3.

PMID:
29510211
46.

High fat diet treatment impairs hippocampal long-term potentiation without alterations of the core neuropathological features of Alzheimer disease.

Salas IH, Weerasekera A, Ahmed T, Callaerts-Vegh Z, Himmelreich U, D'Hooge R, Balschun D, Saido TC, De Strooper B, Dotti CG.

Neurobiol Dis. 2018 May;113:82-96. doi: 10.1016/j.nbd.2018.02.001. Epub 2018 Feb 7.

PMID:
29427755
47.

Dietary lipophilic iron alters amyloidogenesis and microglial morphology in Alzheimer's disease knock-in APP mice.

Peters DG, Pollack AN, Cheng KC, Sun D, Saido T, Haaf MP, Yang QX, Connor JR, Meadowcroft MD.

Metallomics. 2018 Mar 1;10(3):426-443. doi: 10.1039/c8mt00004b. Epub 2018 Feb 9.

PMID:
29424844
48.

Correction for Takano et al., "Vital Role of the Calpain-Calpastatin System for Placental-Integrity-Dependent Embryonic Survival".

Takano J, Mihira N, Fujioka R, Hosoki E, Chishti AH, Saido TC.

Mol Cell Biol. 2018 Jan 29;38(4). pii: e00614-17. doi: 10.1128/MCB.00614-17. Print 2018 Feb 15. No abstract available.

49.

DNA methylation level of the neprilysin promoter in Alzheimer's disease brains.

Nagata K, Mano T, Murayama S, Saido TC, Iwata A.

Neurosci Lett. 2018 Mar 23;670:8-13. doi: 10.1016/j.neulet.2018.01.003. Epub 2018 Jan 12.

PMID:
29339171
50.

Loss of kallikrein-related peptidase 7 exacerbates amyloid pathology in Alzheimer's disease model mice.

Kidana K, Tatebe T, Ito K, Hara N, Kakita A, Saito T, Takatori S, Ouchi Y, Ikeuchi T, Makino M, Saido TC, Akishita M, Iwatsubo T, Hori Y, Tomita T.

EMBO Mol Med. 2018 Mar;10(3). pii: e8184. doi: 10.15252/emmm.201708184.

Supplemental Content

Support Center