Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 97

1.

Neuron-related blood inflammatory markers as an objective evaluation tool for major depressive disorder: An exploratory pilot case-control study.

Kuwano N, Kato TA, Mitsuhashi M, Sato-Kasai M, Shimokawa N, Hayakawa K, Ohgidani M, Sagata N, Kubo H, Sakurai T, Kanba S.

J Affect Disord. 2018 Nov;240:88-98. doi: 10.1016/j.jad.2018.07.040. Epub 2018 Jul 17.

PMID:
30059939
2.

Early-onset epileptic encephalopathy and severe developmental delay in an association with de novo double mutations in NF1 and MAGEL2.

Akamine S, Sagata N, Sakai Y, Kato TA, Nakahara T, Matsushita Y, Togao O, Hiwatashi A, Sanefuji M, Ishizaki Y, Torisu H, Saitsu H, Matsumoto N, Hara T, Sawa A, Kano S, Furue M, Kanba S, Shaw CA, Ohga S.

Epilepsia Open. 2017 Nov 23;3(1):81-85. doi: 10.1002/epi4.12085. eCollection 2018 Mar.

3.

Tryptophan-kynurenine and lipid related metabolites as blood biomarkers for first-episode drug-naïve patients with major depressive disorder: An exploratory pilot case-control study.

Kuwano N, Kato TA, Setoyama D, Sato-Kasai M, Shimokawa N, Hayakawa K, Ohgidani M, Sagata N, Kubo H, Kishimoto J, Kang D, Kanba S.

J Affect Disord. 2018 Apr 15;231:74-82. doi: 10.1016/j.jad.2018.01.014. Epub 2018 Jan 31.

PMID:
29454180
4.

Blood biomarkers of Hikikomori, a severe social withdrawal syndrome.

Hayakawa K, Kato TA, Watabe M, Teo AR, Horikawa H, Kuwano N, Shimokawa N, Sato-Kasai M, Kubo H, Ohgidani M, Sagata N, Toda H, Tateno M, Shinfuku N, Kishimoto J, Kanba S.

Sci Rep. 2018 Feb 13;8(1):2884. doi: 10.1038/s41598-018-21260-w.

5.

Neural-specific deletion of mitochondrial p32/C1qbp leads to leukoencephalopathy due to undifferentiated oligodendrocyte and axon degeneration.

Yagi M, Uchiumi T, Sagata N, Setoyama D, Amamoto R, Matsushima Y, Kang D.

Sci Rep. 2017 Nov 9;7(1):15131. doi: 10.1038/s41598-017-15414-5.

6.

Dysregulated gene expressions of MEX3D, FOS and BCL2 in human induced-neuronal (iN) cells from NF1 patients: a pilot study.

Sagata N, Kato TA, Kano SI, Ohgidani M, Shimokawa N, Sato-Kasai M, Hayakawa K, Kuwano N, Wilson AM, Ishizuka K, Kato S, Nakahara T, Nakahara-Kido M, Setoyama D, Sakai Y, Ohga S, Furue M, Sawa A, Kanba S.

Sci Rep. 2017 Oct 24;7(1):13905. doi: 10.1038/s41598-017-14440-7.

7.

Fibromyalgia and microglial TNF-α: Translational research using human blood induced microglia-like cells.

Ohgidani M, Kato TA, Hosoi M, Tsuda M, Hayakawa K, Hayaki C, Iwaki R, Sagata N, Hashimoto R, Inoue K, Sudo N, Kanba S.

Sci Rep. 2017 Sep 19;7(1):11882. doi: 10.1038/s41598-017-11506-4.

8.

Microglial CD206 Gene Has Potential as a State Marker of Bipolar Disorder.

Ohgidani M, Kato TA, Haraguchi Y, Matsushima T, Mizoguchi Y, Murakawa-Hirachi T, Sagata N, Monji A, Kanba S.

Front Immunol. 2017 Jan 9;7:676. doi: 10.3389/fimmu.2016.00676. eCollection 2016.

9.

Plasma Metabolites Predict Severity of Depression and Suicidal Ideation in Psychiatric Patients-A Multicenter Pilot Analysis.

Setoyama D, Kato TA, Hashimoto R, Kunugi H, Hattori K, Hayakawa K, Sato-Kasai M, Shimokawa N, Kaneko S, Yoshida S, Goto YI, Yasuda Y, Yamamori H, Ohgidani M, Sagata N, Miura D, Kang D, Kanba S.

PLoS One. 2016 Dec 16;11(12):e0165267. doi: 10.1371/journal.pone.0165267. eCollection 2016.

10.

Aripiprazole inhibits polyI:C-induced microglial activation possibly via TRPM7.

Sato-Kasai M, Kato TA, Ohgidani M, Mizoguchi Y, Sagata N, Inamine S, Horikawa H, Hayakawa K, Shimokawa N, Kyuragi S, Seki Y, Monji A, Kanba S.

Schizophr Res. 2016 Dec;178(1-3):35-43. doi: 10.1016/j.schres.2016.08.022. Epub 2016 Sep 7.

PMID:
27614570
11.

TNF-α from hippocampal microglia induces working memory deficits by acute stress in mice.

Ohgidani M, Kato TA, Sagata N, Hayakawa K, Shimokawa N, Sato-Kasai M, Kanba S.

Brain Behav Immun. 2016 Jul;55:17-24. doi: 10.1016/j.bbi.2015.08.022. Epub 2015 Nov 10.

PMID:
26551431
12.

Identification of non-Ser/Thr-Pro consensus motifs for Cdk1 and their roles in mitotic regulation of C2H2 zinc finger proteins and Ect2.

Suzuki K, Sako K, Akiyama K, Isoda M, Senoo C, Nakajo N, Sagata N.

Sci Rep. 2015 Jan 21;5:7929. doi: 10.1038/srep07929.

13.

Direct induction of ramified microglia-like cells from human monocytes: dynamic microglial dysfunction in Nasu-Hakola disease.

Ohgidani M, Kato TA, Setoyama D, Sagata N, Hashimoto R, Shigenobu K, Yoshida T, Hayakawa K, Shimokawa N, Miura D, Utsumi H, Kanba S.

Sci Rep. 2014 May 14;4:4957. doi: 10.1038/srep04957.

14.

Brain-derived neurotrophic factor (BDNF) induces sustained intracellular Ca2+ elevation through the up-regulation of surface transient receptor potential 3 (TRPC3) channels in rodent microglia.

Mizoguchi Y, Kato TA, Seki Y, Ohgidani M, Sagata N, Horikawa H, Yamauchi Y, Sato-Kasai M, Hayakawa K, Inoue R, Kanba S, Monji A.

J Biol Chem. 2014 Jun 27;289(26):18549-55. doi: 10.1074/jbc.M114.555334. Epub 2014 May 8.

15.

Emi2 mediates meiotic MII arrest by competitively inhibiting the binding of Ube2S to the APC/C.

Sako K, Suzuki K, Isoda M, Yoshikai S, Senoo C, Nakajo N, Ohe M, Sagata N.

Nat Commun. 2014 Apr 28;5:3667. doi: 10.1038/ncomms4667.

PMID:
24770399
16.

Genetic factors associated with serum haptoglobin level in a Japanese population.

Soejima M, Sagata N, Komatsu N, Sasada T, Kawaguchi A, Itoh K, Koda Y.

Clin Chim Acta. 2014 Jun 10;433:54-7. doi: 10.1016/j.cca.2014.02.029. Epub 2014 Mar 12.

PMID:
24613938
17.

Associations between microRNA expression and mesenchymal marker gene expression in glioblastoma.

Ma X, Yoshimoto K, Guan Y, Hata N, Mizoguchi M, Sagata N, Murata H, Kuga D, Amano T, Nakamizo A, Sasaki T.

Neuro Oncol. 2012 Sep;14(9):1153-62. doi: 10.1093/neuonc/nos145. Epub 2012 Jul 27.

18.

Temporal and spatial expression patterns of Cdc25 phosphatase isoforms during early Xenopus development.

Nakajo N, Deno YK, Ueno H, Kenmochi C, Shimuta K, Sagata N.

Int J Dev Biol. 2011;55(6):627-32. doi: 10.1387/ijdb.113287nn.

19.

Dynamic regulation of Emi2 by Emi2-bound Cdk1/Plk1/CK1 and PP2A-B56 in meiotic arrest of Xenopus eggs.

Isoda M, Sako K, Suzuki K, Nishino K, Nakajo N, Ohe M, Ezaki T, Kanemori Y, Inoue D, Ueno H, Sagata N.

Dev Cell. 2011 Sep 13;21(3):506-19. doi: 10.1016/j.devcel.2011.06.029. Epub 2011 Aug 25.

20.

Comprehensive behavioural study of GluR4 knockout mice: implication in cognitive function.

Sagata N, Iwaki A, Aramaki T, Takao K, Kura S, Tsuzuki T, Kawakami R, Ito I, Kitamura T, Sugiyama H, Miyakawa T, Fukumaki Y.

Genes Brain Behav. 2010 Nov;9(8):899-909. doi: 10.1111/j.1601-183X.2010.00629.x.

21.

Emi2 inhibition of the anaphase-promoting complex/cyclosome absolutely requires Emi2 binding via the C-terminal RL tail.

Ohe M, Kawamura Y, Ueno H, Inoue D, Kanemori Y, Senoo C, Isoda M, Nakajo N, Sagata N.

Mol Biol Cell. 2010 Mar 15;21(6):905-13. doi: 10.1091/mbc.E09-11-0974. Epub 2010 Jan 20.

22.

The extracellular signal-regulated kinase-mitogen-activated protein kinase pathway phosphorylates and targets Cdc25A for SCF beta-TrCP-dependent degradation for cell cycle arrest.

Isoda M, Kanemori Y, Nakajo N, Uchida S, Yamashita K, Ueno H, Sagata N.

Mol Biol Cell. 2009 Apr;20(8):2186-95. doi: 10.1091/mbc.E09-01-0008. Epub 2009 Feb 25.

23.

Association study of polymorphisms in the neutral amino acid transporter genes SLC1A4, SLC1A5 and the glycine transporter genes SLC6A5, SLC6A9 with schizophrenia.

Deng X, Sagata N, Takeuchi N, Tanaka M, Ninomiya H, Iwata N, Ozaki N, Shibata H, Fukumaki Y.

BMC Psychiatry. 2008 Jul 18;8:58. doi: 10.1186/1471-244X-8-58.

24.

FoxM1-driven cell division is required for neuronal differentiation in early Xenopus embryos.

Ueno H, Nakajo N, Watanabe M, Isoda M, Sagata N.

Development. 2008 Jun;135(11):2023-30. doi: 10.1242/dev.019893.

25.

Mechanism of degradation of CPEB during Xenopus oocyte maturation.

Setoyama D, Yamashita M, Sagata N.

Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18001-6. Epub 2007 Nov 6.

26.

A direct link of the Mos-MAPK pathway to Erp1/Emi2 in meiotic arrest of Xenopus laevis eggs.

Inoue D, Ohe M, Kanemori Y, Nobui T, Sagata N.

Nature. 2007 Apr 26;446(7139):1100-4. Epub 2007 Apr 4.

PMID:
17410130
27.

Mechanism for inactivation of the mitotic inhibitory kinase Wee1 at M phase.

Okamoto K, Sagata N.

Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3753-8. Epub 2007 Feb 23.

28.

Erp1/Emi2 is essential for the meiosis I to meiosis II transition in Xenopus oocytes.

Ohe M, Inoue D, Kanemori Y, Sagata N.

Dev Biol. 2007 Mar 1;303(1):157-64. Epub 2006 Nov 3.

29.

[Regulation of the cell cycle and checkpoint by SCF(beta-TrCP)].

Kanemori Y, Sagata N.

Tanpakushitsu Kakusan Koso. 2006 Aug;51(10 Suppl):1386-90. Review. Japanese. No abstract available.

PMID:
16922405
30.

Beta-TrCP recognizes a previously undescribed nonphosphorylated destruction motif in Cdc25A and Cdc25B phosphatases.

Kanemori Y, Uto K, Sagata N.

Proc Natl Acad Sci U S A. 2005 May 3;102(18):6279-84. Epub 2005 Apr 21.

31.
32.

Chk1, but not Chk2, inhibits Cdc25 phosphatases by a novel common mechanism.

Uto K, Inoue D, Shimuta K, Nakajo N, Sagata N.

EMBO J. 2004 Aug 18;23(16):3386-96. Epub 2004 Jul 22.

33.

Regulation of Chk1 kinase by autoinhibition and ATR-mediated phosphorylation.

Katsuragi Y, Sagata N.

Mol Biol Cell. 2004 Apr;15(4):1680-9. Epub 2004 Feb 6.

34.

Mr 25 000 protein, a substrate for protein serine/threonine kinases, is identified as a part of Xenopus laevis vitellogenin B1.

Yoshitome S, Nakamura H, Nakajo N, Okamoto K, Sugimoto I, Kohara H, Kitayama K, Igarashi K, Ito S, Sagata N, Hashimoto E.

Dev Growth Differ. 2003 Jun;45(3):283-94.

PMID:
12828689
36.

The RRASK motif in Xenopus cyclin B2 is required for the substrate recognition of Cdc25C by the cyclin B-Cdc2 complex.

Goda T, Ishii T, Nakajo N, Sagata N, Kobayashi H.

J Biol Chem. 2003 May 23;278(21):19032-7.

37.

Expression of cell-cycle regulators during Xenopus oogenesis.

Furuno N, Kawasaki A, Sagata N.

Gene Expr Patterns. 2003 May;3(2):165-8.

PMID:
12711544
38.

Molecular biology. Untangling checkpoints.

Sagata N.

Science. 2002 Dec 6;298(5600):1905-7. No abstract available.

PMID:
12471241
40.

Chk1 is activated transiently and targets Cdc25A for degradation at the Xenopus midblastula transition.

Shimuta K, Nakajo N, Uto K, Hayano Y, Okazaki K, Sagata N.

EMBO J. 2002 Jul 15;21(14):3694-703.

41.
42.

The Mos/MAPK pathway is involved in metaphase II arrest as a cytostatic factor but is neither necessary nor sufficient for initiating oocyte maturation in goldfish.

Kajiura-Kobayashi H, Yoshida N, Sagata N, Yamashita M, Nagahama Y.

Dev Genes Evol. 2000 Sep;210(8-9):416-25.

PMID:
11180847
43.

Cytoplasmic occurrence of the Chk1/Cdc25 pathway and regulation of Chk1 in Xenopus oocytes.

Oe T, Nakajo N, Katsuragi Y, Okazaki K, Sagata N.

Dev Biol. 2001 Jan 1;229(1):250-61.

45.

Absence of Wee1 ensures the meiotic cell cycle in Xenopus oocytes.

Nakajo N, Yoshitome S, Iwashita J, Iida M, Uto K, Ueno S, Okamoto K, Sagata N.

Genes Dev. 2000 Feb 1;14(3):328-38.

47.

Involvement of Chk1 kinase in prophase I arrest of Xenopus oocytes.

Nakajo N, Oe T, Uto K, Sagata N.

Dev Biol. 1999 Mar 15;207(2):432-44.

49.

Introduction: meiotic maturation and arrest in animal oocytes.

Sagata N.

Semin Cell Dev Biol. 1998 Oct;9(5):535-7. No abstract available.

PMID:
9835641
50.

Essential role of germinal vesicle material in the meiotic cell cycle of Xenopus oocytes.

Iwashita J, Hayano Y, Sagata N.

Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4392-7.

Supplemental Content

Loading ...
Support Center