Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 88

1.

Thermodynamic Characterization of the Ca2+-Dependent Interaction Between SOUL and ALG-2.

Mikasa T, Kugo M, Nishimura S, Taketani S, Ishijima S, Sagami I.

Int J Mol Sci. 2018 Nov 29;19(12). pii: E3802. doi: 10.3390/ijms19123802.

2.

The homologous Arabidopsis MRS2/MGT/CorA-type Mg2+ channels, AtMRS2-10 and AtMRS2-1 exhibit different aluminum transport activity.

Ishijima S, Manabe Y, Shinkawa Y, Hotta A, Tokumasu A, Ida M, Sagami I.

Biochim Biophys Acta Biomembr. 2018 Nov;1860(11):2184-2191. doi: 10.1016/j.bbamem.2018.08.016. Epub 2018 Aug 31.

3.

Circadian clock disruption by selective removal of endogenous carbon monoxide.

Minegishi S, Sagami I, Negi S, Kano K, Kitagishi H.

Sci Rep. 2018 Aug 10;8(1):11996. doi: 10.1038/s41598-018-30425-6.

4.

The novel heme-dependent inducible protein, SRRD regulates heme biosynthesis and circadian rhythms.

Adachi Y, Umeda M, Kawazoe A, Sato T, Ohkawa Y, Kitajima S, Izawa S, Sagami I, Taketani S.

Arch Biochem Biophys. 2017 Oct 1;631:19-29. doi: 10.1016/j.abb.2017.08.006. Epub 2017 Aug 9.

PMID:
28802827
5.

Magnesium uptake of Arabidopsis transporters, AtMRS2-10 and AtMRS2-11, expressed in Escherichia coli mutants: Complementation and growth inhibition by aluminum.

Ishijima S, Uda M, Hirata T, Shibata M, Kitagawa N, Sagami I.

Biochim Biophys Acta. 2015 Jun;1848(6):1376-82. doi: 10.1016/j.bbamem.2015.03.005. Epub 2015 Mar 13.

6.

Changes in pH and NADPH regulate the DNA binding activity of neuronal PAS domain protein 2, a mammalian circadian transcription factor.

Yoshii K, Tajima F, Ishijima S, Sagami I.

Biochemistry. 2015 Jan 20;54(2):250-9. doi: 10.1021/bi5008518. Epub 2015 Jan 5.

PMID:
25526362
7.

Effects of NAD(P)H and its derivatives on the DNA-binding activity of NPAS2, a mammalian circadian transcription factor.

Yoshii K, Ishijima S, Sagami I.

Biochem Biophys Res Commun. 2013 Aug 2;437(3):386-91. doi: 10.1016/j.bbrc.2013.06.086. Epub 2013 Jul 2.

PMID:
23831463
8.

Imaging of heme/hemeproteins in nucleus of the living cells expressing heme-binding nuclear receptors.

Itoh R, Fujita K, Mu A, Kim DH, Tai TT, Sagami I, Taketani S.

FEBS Lett. 2013 Jul 11;587(14):2131-6. doi: 10.1016/j.febslet.2013.05.036. Epub 2013 Jun 2.

9.

Functional reconstitution and characterization of the Arabidopsis Mg(2+) transporter AtMRS2-10 in proteoliposomes.

Ishijima S, Shigemi Z, Adachi H, Makinouchi N, Sagami I.

Biochim Biophys Acta. 2012 Sep;1818(9):2202-8. doi: 10.1016/j.bbamem.2012.04.015. Epub 2012 Apr 26.

10.

Exhaustive syntheses of naphthofluoresceins and their functions.

Azuma E, Nakamura N, Kuramochi K, Sasamori T, Tokitoh N, Sagami I, Tsubaki K.

J Org Chem. 2012 Apr 6;77(7):3492-500. doi: 10.1021/jo300177b. Epub 2012 Mar 28.

PMID:
22428609
11.

Effects of the bHLH domain on axial coordination of heme in the PAS-A domain of neuronal PAS domain protein 2 (NPAS2): conversion from His119/Cys170 coordination to His119/His171 coordination.

Uchida T, Sagami I, Shimizu T, Ishimori K, Kitagawa T.

J Inorg Biochem. 2012 Mar;108:188-95. doi: 10.1016/j.jinorgbio.2011.12.005. Epub 2011 Dec 27.

PMID:
22245004
12.

Thermodynamic analysis of interactions between cofactor and neuronal nitric oxide synthase.

Sanae R, Kurokawa F, Oda M, Ishijima S, Sagami I.

Biochemistry. 2011 Mar 15;50(10):1714-22. doi: 10.1021/bi101575u. Epub 2011 Feb 3.

PMID:
21244098
13.

Comparison of wild type neuronal nitric oxide synthase and its Tyr588Phe mutant towards various L-arginine analogues.

Giroud C, Moreau M, Sagami I, Shimizu T, Frapart Y, Mansuy D, Boucher JL.

J Inorg Biochem. 2010 Oct;104(10):1043-50. doi: 10.1016/j.jinorgbio.2010.06.001. Epub 2010 Jun 18.

PMID:
20630600
14.

Effects of mutations in the heme domain on the transcriptional activity and DNA-binding activity of NPAS2.

Ishida M, Ueha T, Sagami I.

Biochem Biophys Res Commun. 2008 Apr 4;368(2):292-7. doi: 10.1016/j.bbrc.2008.01.053. Epub 2008 Jan 28.

PMID:
18230344
15.

Characterization of heme-regulated eIF2alpha kinase: roles of the N-terminal domain in the oligomeric state, heme binding, catalysis, and inhibition.

Miksanova M, Igarashi J, Minami M, Sagami I, Yamauchi S, Kurokawa H, Shimizu T.

Biochemistry. 2006 Aug 15;45(32):9894-905.

PMID:
16893190
16.
17.

DOS(Ec), a heme-regulated phosphodiesterase, plays an important role in the regulation of the cyclic AMP level in Escherichia coli.

Yoshimura-Suzuki T, Sagami I, Yokota N, Kurokawa H, Shimizu T.

J Bacteriol. 2005 Oct;187(19):6678-82.

18.

Spectroscopic characterization of the isolated heme-bound PAS-B domain of neuronal PAS domain protein 2 associated with circadian rhythms.

Koudo R, Kurokawa H, Sato E, Igarashi J, Uchida T, Sagami I, Kitagawa T, Shimizu T.

FEBS J. 2005 Aug;272(16):4153-62.

19.

CO-dependent activity-controlling mechanism of heme-containing CO-sensor protein, neuronal PAS domain protein 2.

Uchida T, Sato E, Sato A, Sagami I, Shimizu T, Kitagawa T.

J Biol Chem. 2005 Jun 3;280(22):21358-68. Epub 2005 Mar 29.

20.

[A redox sensing heme-protein from Escherichia coli, Ec DOS: regulation mechanism of phosphodiesterase activity].

Yoshimura-Suzuki T, Sasakura Y, Sagami I, Shimizu T.

Seikagaku. 2005 Feb;77(2):129-33. Review. Japanese. No abstract available.

PMID:
15786738
21.

SOUL in mouse eyes is a new hexameric heme-binding protein with characteristic optical absorption, resonance Raman spectral, and heme-binding properties.

Sato E, Sagami I, Uchida T, Sato A, Kitagawa T, Igarashi J, Shimizu T.

Biochemistry. 2004 Nov 9;43(44):14189-98.

PMID:
15518569
22.
23.
24.

Importance of valine 567 in substrate recognition and oxidation by neuronal nitric oxide synthase.

Moreau M, Takahashi H, Sari MA, Boucher JL, Sagami I, Shimizu T, Mansuy D.

J Inorg Biochem. 2004 Jul;98(7):1200-9.

PMID:
15219986
25.

A redox-controlled molecular switch revealed by the crystal structure of a bacterial heme PAS sensor.

Kurokawa H, Lee DS, Watanabe M, Sagami I, Mikami B, Raman CS, Shimizu T.

J Biol Chem. 2004 May 7;279(19):20186-93. Epub 2004 Feb 23.

26.
27.
28.
29.

Binding of oxygen and carbon monoxide to a heme-regulated phosphodiesterase from Escherichia coli. Kinetics and infrared spectra of the full-length wild-type enzyme, isolated PAS domain, and Met-95 mutants.

Taguchi S, Matsui T, Igarashi J, Sasakura Y, Araki Y, Ito O, Sugiyama S, Sagami I, Shimizu T.

J Biol Chem. 2004 Jan 30;279(5):3340-7. Epub 2003 Nov 11.

30.
31.

CO binding study of mouse heme-regulated eIF-2alpha kinase: kinetics and resonance Raman spectra.

Igarashi J, Sato A, Kitagawa T, Sagami I, Shimizu T.

Biochim Biophys Acta. 2003 Aug 21;1650(1-2):99-104.

PMID:
12922173
32.

[Structure-function relationships of NO synthase: electron transfer reaction].

Sagami I, Sato Y, Shimizu T.

Seikagaku. 2003 May;75(5):351-8. Review. Japanese. No abstract available.

PMID:
12822432
33.
34.
35.

Unusual cyanide bindings to a heme-regulated phosphodiesterase from Escherichia coli: effect of Met95 mutations.

Watanabe M, Matsui T, Sasakura Y, Sagami I, Shimizu T.

Biochem Biophys Res Commun. 2002 Nov 29;299(2):169-72.

PMID:
12437964
36.

Catalytically functional flavocytochrome chimeras of P450 BM3 and nitric oxide synthase.

Fuziwara S, Sagami I, Rozhkova E, Craig D, Noble MA, Munro AW, Chapman SK, Shimizu T.

J Inorg Biochem. 2002 Sep 20;91(4):515-26.

PMID:
12237219
37.

Stationary and time-resolved resonance Raman spectra of His77 and Met95 mutants of the isolated heme domain of a direct oxygen sensor from Escherichia coli.

Sato A, Sasakura Y, Sugiyama S, Sagami I, Shimizu T, Mizutani Y, Kitagawa T.

J Biol Chem. 2002 Sep 6;277(36):32650-8. Epub 2002 Jun 21.

38.

Characterization of a direct oxygen sensor heme protein from Escherichia coli. Effects of the heme redox states and mutations at the heme-binding site on catalysis and structure.

Sasakura Y, Hirata S, Sugiyama S, Suzuki S, Taguchi S, Watanabe M, Matsui T, Sagami I, Shimizu T.

J Biol Chem. 2002 Jun 28;277(26):23821-7. Epub 2002 Apr 22.

39.

Interactions between the isolated oxygenase and reductase domains of neuronal nitric-oxide synthase: assessing the role of calmodulin.

Rozhkova EA, Fujimoto N, Sagami I, Daff SN, Shimizu T.

J Biol Chem. 2002 May 10;277(19):16888-94. Epub 2002 Mar 7.

40.
41.

Rapid calmodulin-dependent interdomain electron transfer in neuronal nitric-oxide synthase measured by pulse radiolysis.

Kobayashi K, Tagawa S, Daff S, Sagami I, Shimizu T.

J Biol Chem. 2001 Oct 26;276(43):39864-71. Epub 2001 Aug 22.

42.
43.

Control of electron transfer in neuronal NO synthase.

Daff S, Noble MA, Craig DH, Rivers SL, Chapman SK, Munro AW, Fujiwara S, Rozhkova E, Sagami I, Shimizu T.

Biochem Soc Trans. 2001 May;29(Pt 2):147-52.

PMID:
11356143
44.

Important role of tetrahydrobiopterin in no complex formation and interdomain electron transfer in neuronal nitric-oxide synthase.

Noguchi T, Sagami I, Daff S, Shimizu T.

Biochem Biophys Res Commun. 2001 Apr 20;282(5):1092-7.

PMID:
11302726
45.

Unusual role of Tyr588 of neuronal nitric oxide synthase in controlling substrate specificity and electron transfer.

Sato Y, Sagami I, Matsui T, Shimizu T.

Biochem Biophys Res Commun. 2001 Mar 2;281(3):621-6.

PMID:
11237702
46.
47.

Azo reduction of methyl red by neuronal nitric oxide synthase: the important role of FMN in catalysis.

Miyajima M, Sagami I, Daff S, Taiko Migita C, Shimizu T.

Biochem Biophys Res Commun. 2000 Sep 7;275(3):752-8.

PMID:
10973794
49.

Potentiometric analysis of the flavin cofactors of neuronal nitric oxide synthase.

Noble MA, Munro AW, Rivers SL, Robledo L, Daff SN, Yellowlees LJ, Shimizu T, Sagami I, Guillemette JG, Chapman SK.

Biochemistry. 1999 Dec 14;38(50):16413-8.

PMID:
10600101

Supplemental Content

Loading ...
Support Center