Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 33

1.

Central Amygdala Prepronociceptin-Expressing Neurons Mediate Palatable Food Consumption and Reward.

Hardaway JA, Halladay LR, Mazzone CM, Pati D, Bloodgood DW, Kim M, Jensen J, DiBerto JF, Boyt KM, Shiddapur A, Erfani A, Hon OJ, Neira S, Stanhope CM, Sugam JA, Saddoris MP, Tipton G, McElligott Z, Jhou TC, Stuber GD, Bruchas MR, Bulik CM, Holmes A, Kash TL.

Neuron. 2019 Jun 5;102(5):1088. doi: 10.1016/j.neuron.2019.04.036. No abstract available.

2.

Central Amygdala Prepronociceptin-Expressing Neurons Mediate Palatable Food Consumption and Reward.

Hardaway JA, Halladay LR, Mazzone CM, Pati D, Bloodgood DW, Kim M, Jensen J, DiBerto JF, Boyt KM, Shiddapur A, Erfani A, Hon OJ, Neira S, Stanhope CM, Sugam JA, Saddoris MP, Tipton G, McElligott Z, Jhou TC, Stuber GD, Bruchas MR, Bulik CM, Holmes A, Kash TL.

Neuron. 2019 Jun 5;102(5):1037-1052.e7. doi: 10.1016/j.neuron.2019.03.037. Epub 2019 Apr 24. Erratum in: Neuron. 2019 Jun 5;102(5):1088.

PMID:
31029403
3.

Heterogeneous dopamine signals support distinct features of motivated actions: implications for learning and addiction.

Saddoris MP, Siletti KA, Stansfield KJ, Bercum MF.

Learn Mem. 2018 Aug 16;25(9):416-424. doi: 10.1101/lm.047019.117. Print 2018 Sep. Review.

4.

Nucleus Accumbens Shell Dopamine Preferentially Tracks Information Related to Outcome Value of Reward.

Sackett DA, Saddoris MP, Carelli RM.

eNeuro. 2017 Jun 7;4(3). pii: ENEURO.0058-17.2017. doi: 10.1523/ENEURO.0058-17.2017. eCollection 2017 May-Jun.

5.

Activation of a Habenulo-Raphe Circuit Is Critical for the Behavioral and Neurochemical Consequences of Uncontrollable Stress in the Male Rat.

Dolzani SD, Baratta MV, Amat J, Agster KL, Saddoris MP, Watkins LR, Maier SF.

eNeuro. 2016 Oct 17;3(5). pii: ENEURO.0229-16.2016. eCollection 2016 Sep-Oct.

6.

Prior Cocaine Experience Impairs Normal Phasic Dopamine Signals of Reward Value in Accumbens Shell.

Saddoris MP, Sugam JA, Carelli RM.

Neuropsychopharmacology. 2017 Feb;42(3):766-773. doi: 10.1038/npp.2016.189. Epub 2016 Sep 8.

7.
8.

Subcortical connections of the perirhinal, postrhinal, and entorhinal cortices of the rat. II. efferents.

Agster KL, Tomás Pereira I, Saddoris MP, Burwell RD.

Hippocampus. 2016 Sep;26(9):1213-30. doi: 10.1002/hipo.22600. Epub 2016 May 24.

9.

Cocaine Self-Administration Experience Induces Pathological Phasic Accumbens Dopamine Signals and Abnormal Incentive Behaviors in Drug-Abstinent Rats.

Saddoris MP, Wang X, Sugam JA, Carelli RM.

J Neurosci. 2016 Jan 6;36(1):235-50. doi: 10.1523/JNEUROSCI.3468-15.2016.

10.

Construction of Training Sets for Valid Calibration of in Vivo Cyclic Voltammetric Data by Principal Component Analysis.

Rodeberg NT, Johnson JA, Cameron CM, Saddoris MP, Carelli RM, Wightman RM.

Anal Chem. 2015 Nov 17;87(22):11484-91. doi: 10.1021/acs.analchem.5b03222. Epub 2015 Oct 27.

11.

Differential Dopamine Release Dynamics in the Nucleus Accumbens Core and Shell Reveal Complementary Signals for Error Prediction and Incentive Motivation.

Saddoris MP, Cacciapaglia F, Wightman RM, Carelli RM.

J Neurosci. 2015 Aug 19;35(33):11572-82. doi: 10.1523/JNEUROSCI.2344-15.2015.

12.

Mesolimbic dopamine dynamically tracks, and is causally linked to, discrete aspects of value-based decision making.

Saddoris MP, Sugam JA, Stuber GD, Witten IB, Deisseroth K, Carelli RM.

Biol Psychiatry. 2015 May 15;77(10):903-911. doi: 10.1016/j.biopsych.2014.10.024. Epub 2014 Nov 13.

13.

Nucleus accumbens core neurons encode value-independent associations necessary for sensory preconditioning.

Cerri DH, Saddoris MP, Carelli RM.

Behav Neurosci. 2014 Oct;128(5):567-578. doi: 10.1037/a0037797.

14.

Prelimbic and infralimbic cortical regions differentially encode cocaine-associated stimuli and cocaine-seeking before and following abstinence.

West EA, Saddoris MP, Kerfoot EC, Carelli RM.

Eur J Neurosci. 2014 Jun;39(11):1891-902. doi: 10.1111/ejn.12578. Epub 2014 Apr 1.

15.

Nucleus accumbens neurons track behavioral preferences and reward outcomes during risky decision making.

Sugam JA, Saddoris MP, Carelli RM.

Biol Psychiatry. 2014 May 15;75(10):807-816. doi: 10.1016/j.biopsych.2013.09.010. Epub 2013 Oct 19.

16.

Cocaine self-administration abolishes associative neural encoding in the nucleus accumbens necessary for higher-order learning.

Saddoris MP, Carelli RM.

Biol Psychiatry. 2014 Jan 15;75(2):156-64. doi: 10.1016/j.biopsych.2013.07.037. Epub 2013 Sep 12.

17.

Rapid dopamine dynamics in the accumbens core and shell: learning and action.

Saddoris MP, Sugam JA, Cacciapaglia F, Carelli RM.

Front Biosci (Elite Ed). 2013 Jan 1;5:273-88. Review.

18.

Differential dopamine release dynamics in the nucleus accumbens core and shell track distinct aspects of goal-directed behavior for sucrose.

Cacciapaglia F, Saddoris MP, Wightman RM, Carelli RM.

Neuropharmacology. 2012 Apr;62(5-6):2050-6. doi: 10.1016/j.neuropharm.2011.12.027. Epub 2012 Jan 12.

19.

Neural correlates of Pavlovian-to-instrumental transfer in the nucleus accumbens shell are selectively potentiated following cocaine self-administration.

Saddoris MP, Stamatakis A, Carelli RM.

Eur J Neurosci. 2011 Jun;33(12):2274-87. doi: 10.1111/j.1460-9568.2011.07683.x. Epub 2011 Apr 20.

20.

Associatively learned representations of taste outcomes activate taste-encoding neural ensembles in gustatory cortex.

Saddoris MP, Holland PC, Gallagher M.

J Neurosci. 2009 Dec 9;29(49):15386-96. doi: 10.1523/JNEUROSCI.3233-09.2009.

21.

Reconciling the roles of orbitofrontal cortex in reversal learning and the encoding of outcome expectancies.

Schoenbaum G, Saddoris MP, Stalnaker TA.

Ann N Y Acad Sci. 2007 Dec;1121:320-35. Epub 2007 Aug 14.

22.

Encoding changes in orbitofrontal cortex in reversal-impaired aged rats.

Schoenbaum G, Setlow B, Saddoris MP, Gallagher M.

J Neurophysiol. 2006 Mar;95(3):1509-17. Epub 2005 Dec 7.

23.
24.

Rapid associative encoding in basolateral amygdala depends on connections with orbitofrontal cortex.

Saddoris MP, Gallagher M, Schoenbaum G.

Neuron. 2005 Apr 21;46(2):321-31.

25.

Orbitofrontal lesions impair use of cue-outcome associations in a devaluation task.

Pickens CL, Saddoris MP, Gallagher M, Holland PC.

Behav Neurosci. 2005 Feb;119(1):317-22.

26.

Corticohippocampal contributions to spatial and contextual learning.

Burwell RD, Saddoris MP, Bucci DJ, Wiig KA.

J Neurosci. 2004 Apr 14;24(15):3826-36.

27.

Cocaine-experienced rats exhibit learning deficits in a task sensitive to orbitofrontal cortex lesions.

Schoenbaum G, Saddoris MP, Ramus SJ, Shaham Y, Setlow B.

Eur J Neurosci. 2004 Apr;19(7):1997-2002.

PMID:
15078575
28.

Different roles for orbitofrontal cortex and basolateral amygdala in a reinforcer devaluation task.

Pickens CL, Saddoris MP, Setlow B, Gallagher M, Holland PC, Schoenbaum G.

J Neurosci. 2003 Dec 3;23(35):11078-84.

29.
30.

Lesions of orbitofrontal cortex and basolateral amygdala complex disrupt acquisition of odor-guided discriminations and reversals.

Schoenbaum G, Setlow B, Nugent SL, Saddoris MP, Gallagher M.

Learn Mem. 2003 Mar-Apr;10(2):129-40.

31.

Contextual fear discrimination is impaired by damage to the postrhinal or perirhinal cortex.

Bucci DJ, Saddoris MP, Burwell RD.

Behav Neurosci. 2002 Jun;116(3):479-88.

PMID:
12049329
32.

Teaching old rats new tricks: age-related impairments in olfactory reversal learning.

Schoenbaum G, Nugent S, Saddoris MP, Gallagher M.

Neurobiol Aging. 2002 Jul-Aug;23(4):555-64.

PMID:
12009505
33.

Orbitofrontal lesions in rats impair reversal but not acquisition of go, no-go odor discriminations.

Schoenbaum G, Nugent SL, Saddoris MP, Setlow B.

Neuroreport. 2002 May 7;13(6):885-90.

PMID:
11997707

Supplemental Content

Loading ...
Support Center