Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 26

1.

ZEB1-induced tumourigenesis requires senescence inhibition via activation of DKK1/mutant p53/Mdm2/CtBP and repression of macroH2A1.

de Barrios O, Győrffy B, Fernández-Aceñero MJ, Sánchez-Tilló E, Sánchez-Moral L, Siles L, Esteve-Arenys A, Roué G, Casal JI, Darling DS, Castells A, Postigo A.

Gut. 2017 Apr;66(4):666-682. doi: 10.1136/gutjnl-2015-310838. Epub 2016 Dec 13.

PMID:
27965283
2.

ZEB1 and TCF4 reciprocally modulate their transcriptional activities to regulate Wnt target gene expression.

Sánchez-Tilló E, de Barrios O, Valls E, Darling DS, Castells A, Postigo A.

Oncogene. 2015 Nov 12;34(46):5760-70. doi: 10.1038/onc.2015.352. Epub 2015 Sep 21.

PMID:
26387539
3.

The ZEB1 transcription factor acts in a negative feedback loop with miR200 downstream of Ras and Rb1 to regulate Bmi1 expression.

Liu Y, Sánchez-Tilló E, Lu X, Huang L, Clem B, Telang S, Jenson AB, Cuatrecasas M, Chesney J, Postigo A, Dean DC.

J Biol Chem. 2014 Feb 14;289(7):4116-25. doi: 10.1074/jbc.M113.533505. Epub 2013 Dec 26.

4.

Rb1 family mutation is sufficient for sarcoma initiation.

Liu Y, Sánchez-Tilló E, Lu X, Clem B, Telang S, Jenson AB, Cuatrecasas M, Chesney J, Postigo A, Dean DC.

Nat Commun. 2013;4:2650. doi: 10.1038/ncomms3650.

PMID:
24150016
5.

The EMT activator ZEB1 promotes tumor growth and determines differential response to chemotherapy in mantle cell lymphoma.

Sánchez-Tilló E, Fanlo L, Siles L, Montes-Moreno S, Moros A, Chiva-Blanch G, Estruch R, Martinez A, Colomer D, Győrffy B, Roué G, Postigo A.

Cell Death Differ. 2014 Feb;21(2):247-57. doi: 10.1038/cdd.2013.123. Epub 2013 Sep 6.

6.

Sequential inductions of the ZEB1 transcription factor caused by mutation of Rb and then Ras proteins are required for tumor initiation and progression.

Liu Y, Sánchez-Tilló E, Lu X, Huang L, Clem B, Telang S, Jenson AB, Cuatrecasas M, Chesney J, Postigo A, Dean DC.

J Biol Chem. 2013 Apr 19;288(16):11572-80. doi: 10.1074/jbc.M112.434951. Epub 2013 Feb 26.

7.

ZEB1 Promotes invasiveness of colorectal carcinoma cells through the opposing regulation of uPA and PAI-1.

Sánchez-Tilló E, de Barrios O, Siles L, Amendola PG, Darling DS, Cuatrecasas M, Castells A, Postigo A.

Clin Cancer Res. 2013 Mar 1;19(5):1071-82. doi: 10.1158/1078-0432.CCR-12-2675. Epub 2013 Jan 22.

8.

ZEB1 imposes a temporary stage-dependent inhibition of muscle gene expression and differentiation via CtBP-mediated transcriptional repression.

Siles L, Sánchez-Tilló E, Lim JW, Darling DS, Kroll KL, Postigo A.

Mol Cell Biol. 2013 Apr;33(7):1368-82. doi: 10.1128/MCB.01259-12. Epub 2013 Jan 22.

9.

EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness.

Sánchez-Tilló E, Liu Y, de Barrios O, Siles L, Fanlo L, Cuatrecasas M, Darling DS, Dean DC, Castells A, Postigo A.

Cell Mol Life Sci. 2012 Oct;69(20):3429-56. doi: 10.1007/s00018-012-1122-2. Epub 2012 Sep 4. Review.

PMID:
22945800
10.

β-catenin/TCF4 complex induces the epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate tumor invasiveness.

Sánchez-Tilló E, de Barrios O, Siles L, Cuatrecasas M, Castells A, Postigo A.

Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19204-9. doi: 10.1073/pnas.1108977108. Epub 2011 Nov 11.

11.

Expanding roles of ZEB factors in tumorigenesis and tumor progression.

Sánchez-Tilló E, Siles L, de Barrios O, Cuatrecasas M, Vaquero EC, Castells A, Postigo A.

Am J Cancer Res. 2011;1(7):897-912. Epub 2011 Aug 20.

12.

Accelerated DNA replication in E2F1- and E2F2-deficient macrophages leads to induction of the DNA damage response and p21(CIP1)-dependent senescence.

Iglesias-Ara A, Zenarruzabeitia O, Fernandez-Rueda J, Sánchez-Tilló E, Field SJ, Celada A, Zubiaga AM.

Oncogene. 2010 Oct 14;29(41):5579-90. doi: 10.1038/onc.2010.296. Epub 2010 Aug 2.

PMID:
20676136
13.

ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatin-remodeling protein BRG1.

Sánchez-Tilló E, Lázaro A, Torrent R, Cuatrecasas M, Vaquero EC, Castells A, Engel P, Postigo A.

Oncogene. 2010 Jun 17;29(24):3490-500. doi: 10.1038/onc.2010.102. Epub 2010 Apr 26.

PMID:
20418909
14.

ZEB1 and CtBP form a repressive complex at a distal promoter element of the BCL6 locus.

Papadopoulou V, Postigo A, Sánchez-Tilló E, Porter AC, Wagner SD.

Biochem J. 2010 Apr 14;427(3):541-50. doi: 10.1042/BJ20091578.

PMID:
20175752
15.

CREB and AP-1 activation regulates MKP-1 induction by LPS or M-CSF and their kinetics correlate with macrophage activation versus proliferation.

Casals-Casas C, Alvarez E, Serra M, de la Torre C, Farrera C, Sánchez-Tilló E, Caelles C, Lloberas J, Celada A.

Eur J Immunol. 2009 Jul;39(7):1902-13. doi: 10.1002/eji.200839037.

16.

Homogeneous conjugation of peptides onto gold nanoparticles enhances macrophage response.

Bastús NG, Sánchez-Tilló E, Pujals S, Farrera C, López C, Giralt E, Celada A, Lloberas J, Puntes V.

ACS Nano. 2009 Jun 23;3(6):1335-44. doi: 10.1021/nn8008273.

PMID:
19489561
17.

Peptides conjugated to gold nanoparticles induce macrophage activation.

Bastús NG, Sánchez-Tilló E, Pujals S, Farrera C, Kogan MJ, Giralt E, Celada A, Lloberas J, Puntes V.

Mol Immunol. 2009 Feb;46(4):743-8. doi: 10.1016/j.molimm.2008.08.277. Epub 2008 Nov 8.

PMID:
18996597
18.

IFN-{gamma}-mediated inhibition of MAPK phosphatase expression results in prolonged MAPK activity in response to M-CSF and inhibition of proliferation.

Valledor AF, Arpa L, Sánchez-Tilló E, Comalada M, Casals C, Xaus J, Caelles C, Lloberas J, Celada A.

Blood. 2008 Oct 15;112(8):3274-82. doi: 10.1182/blood-2007-11-123604. Epub 2008 Aug 5.

19.

Selective roles of MAPKs during the macrophage response to IFN-gamma.

Valledor AF, Sánchez-Tilló E, Arpa L, Park JM, Caelles C, Lloberas J, Celada A.

J Immunol. 2008 Apr 1;180(7):4523-9.

20.

NMR structural studies of the ItchWW3 domain reveal that phosphorylation at T30 inhibits the interaction with PPxY-containing ligands.

Morales B, Ramirez-Espain X, Shaw AZ, Martin-Malpartida P, Yraola F, Sánchez-Tilló E, Farrera C, Celada A, Royo M, Macias MJ.

Structure. 2007 Apr;15(4):473-83.

21.

JNK1 Is required for the induction of Mkp1 expression in macrophages during proliferation and lipopolysaccharide-dependent activation.

Sánchez-Tilló E, Comalada M, Xaus J, Farrera C, Valledor AF, Caelles C, Lloberas J, Celada A.

J Biol Chem. 2007 Apr 27;282(17):12566-73. Epub 2007 Mar 2.

22.

Kv1.3/Kv1.5 heteromeric channels compromise pharmacological responses in macrophages.

Villalonga N, Escalada A, Vicente R, Sánchez-Tilló E, Celada A, Solsona C, Felipe A.

Biochem Biophys Res Commun. 2007 Jan 26;352(4):913-8. Epub 2006 Dec 4.

PMID:
17157812
23.

Cyclophilin A is required for M-CSF-dependent macrophage proliferation.

Sànchez-Tilló E, Wojciechowska M, Comalada M, Farrera C, Lloberas J, Celada A.

Eur J Immunol. 2006 Sep;36(9):2515-24.

24.
26.

Differential voltage-dependent K+ channel responses during proliferation and activation in macrophages.

Vicente R, Escalada A, Coma M, Fuster G, Sánchez-Tilló E, López-Iglesias C, Soler C, Solsona C, Celada A, Felipe A.

J Biol Chem. 2003 Nov 21;278(47):46307-20. Epub 2003 Aug 15. Erratum in: J Biol Chem. 2005 Apr 1;280(13):13204.

Supplemental Content

Loading ...
Support Center