Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 34

1.

Evolution of Distinct Responses to Low NAD+ Stress by Rewiring the Sir2 Deacetylase Network in Yeasts.

Humphrey KM, Zhu L, Hickman MA, Hasan S, Maria H, Liu T, Rusche LN.

Genetics. 2020 Feb 18. pii: genetics.303087.2020. doi: 10.1534/genetics.120.303087. [Epub ahead of print]

2.

The Yeast Heterochromatin Protein Sir3 Experienced Functional Changes in the AAA+ Domain After Gene Duplication and Subfunctionalization.

Hanner AS, Rusche LN.

Genetics. 2017 Oct;207(2):517-528. doi: 10.1534/genetics.117.300180. Epub 2017 Aug 21.

3.

Sporadic Gene Loss After Duplication Is Associated with Functional Divergence of Sirtuin Deacetylases Among Candida Yeast Species.

Rupert CB, Heltzel JM, Taylor DJ, Rusche LN.

G3 (Bethesda). 2016 Oct 13;6(10):3297-3305. doi: 10.1534/g3.116.033845.

4.

Regional centromeres in the yeast Candida lusitaniae lack pericentromeric heterochromatin.

Kapoor S, Zhu L, Froyd C, Liu T, Rusche LN.

Proc Natl Acad Sci U S A. 2015 Sep 29;112(39):12139-44. doi: 10.1073/pnas.1508749112. Epub 2015 Sep 14.

5.

Origin replication complex binding, nucleosome depletion patterns, and a primary sequence motif can predict origins of replication in a genome with epigenetic centromeres.

Tsai HJ, Baller JA, Liachko I, Koren A, Burrack LS, Hickman MA, Thevandavakkam MA, Rusche LN, Berman J.

mBio. 2014 Sep 2;5(5):e01703-14. doi: 10.1128/mBio.01703-14.

6.

The deacetylase Sir2 from the yeast Clavispora lusitaniae lacks the evolutionarily conserved capacity to generate subtelomeric heterochromatin.

Froyd CA, Kapoor S, Dietrich F, Rusche LN.

PLoS Genet. 2013 Oct;9(10):e1003935. doi: 10.1371/journal.pgen.1003935. Epub 2013 Oct 31.

7.

Molecular and genetic evidence for a tetrapolar mating system in the basidiomycetous yeast Kwoniella mangrovensis and two novel sibling species.

Guerreiro MA, Springer DJ, Rodrigues JA, Rusche LN, Findley K, Heitman J, Fonseca A.

Eukaryot Cell. 2013 May;12(5):746-60. doi: 10.1128/EC.00065-13. Epub 2013 Mar 22.

8.

Reinventing heterochromatin in budding yeasts: Sir2 and the origin recognition complex take center stage.

Hickman MA, Froyd CA, Rusche LN.

Eukaryot Cell. 2011 Sep;10(9):1183-92. doi: 10.1128/EC.05123-11. Epub 2011 Jul 15. Review.

9.

The duplicated deacetylases Sir2 and Hst1 subfunctionalized by acquiring complementary inactivating mutations.

Froyd CA, Rusche LN.

Mol Cell Biol. 2011 Aug;31(16):3351-65. doi: 10.1128/MCB.05175-11. Epub 2011 Jun 20.

10.

A region of the nucleosome required for multiple types of transcriptional silencing in Saccharomyces cerevisiae.

Prescott ET, Safi A, Rusche LN.

Genetics. 2011 Jul;188(3):535-48. doi: 10.1534/genetics.111.129197. Epub 2011 May 5.

11.

Transcriptional silencing functions of the yeast protein Orc1/Sir3 subfunctionalized after gene duplication.

Hickman MA, Rusche LN.

Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19384-9. doi: 10.1073/pnas.1006436107. Epub 2010 Oct 25.

12.

An auxiliary silencer and a boundary element maintain high levels of silencing proteins at HMR in Saccharomyces cerevisiae.

Lynch PJ, Rusche LN.

Genetics. 2010 May;185(1):113-27. doi: 10.1534/genetics.109.113100. Epub 2010 Feb 22.

13.
14.
15.

Assembling heterochromatin in the appropriate places: A boost is needed.

Rusche LN, Lynch PJ.

J Cell Physiol. 2009 Jun;219(3):525-8. doi: 10.1002/jcp.21749. Review.

16.

A silencer promotes the assembly of silenced chromatin independently of recruitment.

Lynch PJ, Rusche LN.

Mol Cell Biol. 2009 Jan;29(1):43-56. doi: 10.1128/MCB.00983-08. Epub 2008 Oct 27.

17.

Evolution of new function through a single amino acid change in the yeast repressor Sum1p.

Safi A, Wallace KA, Rusche LN.

Mol Cell Biol. 2008 Apr;28(8):2567-78. doi: 10.1128/MCB.01785-07. Epub 2008 Feb 11.

19.

Sum1p, the origin recognition complex, and the spreading of a promoter-specific repressor in Saccharomyces cerevisiae.

Lynch PJ, Fraser HB, Sevastopoulos E, Rine J, Rusche LN.

Mol Cell Biol. 2005 Jul;25(14):5920-32.

20.

The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae.

Rusche LN, Kirchmaier AL, Rine J.

Annu Rev Biochem. 2003;72:481-516. Epub 2003 Mar 27. Review.

PMID:
12676793
21.

Ordered nucleation and spreading of silenced chromatin in Saccharomyces cerevisiae.

Rusché LN, Kirchmaier AL, Rine J.

Mol Biol Cell. 2002 Jul;13(7):2207-22.

22.

Direct sizing of RNA fragments using RNase-generated standards.

Sollner-Webb B, Cruz-Reyes J, Rusché LN.

Methods Enzymol. 2001;342:378-83. No abstract available.

PMID:
11586910
23.

Ribonuclease activities of trypanosome RNA editing complex directed to cleave specifically at a chosen site.

Sollner-Webb B, Rusché LN, Cruz-Reyes J.

Methods Enzymol. 2001;341:154-74. No abstract available.

PMID:
11582776
24.

Conversion of a gene-specific repressor to a regional silencer.

Rusché LN, Rine J.

Genes Dev. 2001 Apr 15;15(8):955-67.

25.

The two RNA ligases of the Trypanosoma brucei RNA editing complex: cloning the essential band IV gene and identifying the band V gene.

Rusché LN, Huang CE, Piller KJ, Hemann M, Wirtz E, Sollner-Webb B.

Mol Cell Biol. 2001 Feb;21(4):979-89.

26.
27.

T. brucei RNA editing: adenosine nucleotides inversely affect U-deletion and U-insertion reactions at mRNA cleavage.

Cruz-Reyes J, Rusché LN, Piller KJ, Sollner-Webb B.

Mol Cell. 1998 Feb;1(3):401-9.

28.
29.

Purification of a functional enzymatic editing complex from Trypanosoma brucei mitochondria.

Rusché LN, Cruz-Reyes J, Piller KJ, Sollner-Webb B.

EMBO J. 1997 Jul 1;16(13):4069-81.

30.
31.
34.

Editing domains of Trypanosoma brucei mitochondrial RNAs identified by secondary structure.

Piller KJ, Decker CJ, Rusché LN, Harris ME, Hajduk SL, Sollner-Webb B.

Mol Cell Biol. 1995 Jun;15(6):2916-24.

Supplemental Content

Loading ...
Support Center