Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 28

1.

β-Cardiac myosin hypertrophic cardiomyopathy mutations release sequestered heads and increase enzymatic activity.

Adhikari AS, Trivedi DV, Sarkar SS, Song D, Kooiker KB, Bernstein D, Spudich JA, Ruppel KM.

Nat Commun. 2019 Jun 18;10(1):2685. doi: 10.1038/s41467-019-10555-9.

2.

SETD3 is an actin histidine methyltransferase that prevents primary dystocia.

Wilkinson AW, Diep J, Dai S, Liu S, Ooi YS, Song D, Li TM, Horton JR, Zhang X, Liu C, Trivedi DV, Ruppel KM, Vilches-Moure JG, Casey KM, Mak J, Cowan T, Elias JE, Nagamine CM, Spudich JA, Cheng X, Carette JE, Gozani O.

Nature. 2019 Jan;565(7739):372-376. doi: 10.1038/s41586-018-0821-8. Epub 2018 Dec 10.

3.

Deciphering the super relaxed state of human β-cardiac myosin and the mode of action of mavacamten from myosin molecules to muscle fibers.

Anderson RL, Trivedi DV, Sarkar SS, Henze M, Ma W, Gong H, Rogers CS, Gorham JM, Wong FL, Morck MM, Seidman JG, Ruppel KM, Irving TC, Cooke R, Green EM, Spudich JA.

Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):E8143-E8152. doi: 10.1073/pnas.1809540115. Epub 2018 Aug 13.

4.

Controlling load-dependent kinetics of β-cardiac myosin at the single-molecule level.

Liu C, Kawana M, Song D, Ruppel KM, Spudich JA.

Nat Struct Mol Biol. 2018 Jun;25(6):505-514. doi: 10.1038/s41594-018-0069-x. Epub 2018 Jun 4.

5.

Dilated cardiomyopathy myosin mutants have reduced force-generating capacity.

Ujfalusi Z, Vera CD, Mijailovich SM, Svicevic M, Yu EC, Kawana M, Ruppel KM, Spudich JA, Geeves MA, Leinwand LA.

J Biol Chem. 2018 Jun 8;293(23):9017-9029. doi: 10.1074/jbc.RA118.001938. Epub 2018 Apr 17.

6.

Hypertrophic cardiomyopathy and the myosin mesa: viewing an old disease in a new light.

Trivedi DV, Adhikari AS, Sarkar SS, Ruppel KM, Spudich JA.

Biophys Rev. 2018 Feb;10(1):27-48. doi: 10.1007/s12551-017-0274-6. Epub 2017 Jul 17. Review.

7.

The myosin mesa and the basis of hypercontractility caused by hypertrophic cardiomyopathy mutations.

Nag S, Trivedi DV, Sarkar SS, Adhikari AS, Sunitha MS, Sutton S, Ruppel KM, Spudich JA.

Nat Struct Mol Biol. 2017 Jun;24(6):525-533. doi: 10.1038/nsmb.3408. Epub 2017 May 8.

8.

Biophysical properties of human β-cardiac myosin with converter mutations that cause hypertrophic cardiomyopathy.

Kawana M, Sarkar SS, Sutton S, Ruppel KM, Spudich JA.

Sci Adv. 2017 Feb 10;3(2):e1601959. doi: 10.1126/sciadv.1601959. eCollection 2017 Feb.

9.

Early-Onset Hypertrophic Cardiomyopathy Mutations Significantly Increase the Velocity, Force, and Actin-Activated ATPase Activity of Human β-Cardiac Myosin.

Adhikari AS, Kooiker KB, Sarkar SS, Liu C, Bernstein D, Spudich JA, Ruppel KM.

Cell Rep. 2016 Dec 13;17(11):2857-2864. doi: 10.1016/j.celrep.2016.11.040.

10.

Multidimensional structure-function relationships in human β-cardiac myosin from population-scale genetic variation.

Homburger JR, Green EM, Caleshu C, Sunitha MS, Taylor RE, Ruppel KM, Metpally RP, Colan SD, Michels M, Day SM, Olivotto I, Bustamante CD, Dewey FE, Ho CY, Spudich JA, Ashley EA.

Proc Natl Acad Sci U S A. 2016 Jun 14;113(24):6701-6. doi: 10.1073/pnas.1606950113. Epub 2016 May 31.

11.

Effects of hypertrophic and dilated cardiomyopathy mutations on power output by human β-cardiac myosin.

Spudich JA, Aksel T, Bartholomew SR, Nag S, Kawana M, Yu EC, Sarkar SS, Sung J, Sommese RF, Sutton S, Cho C, Adhikari AS, Taylor R, Liu C, Trivedi D, Ruppel KM.

J Exp Biol. 2016 Jan;219(Pt 2):161-7. doi: 10.1242/jeb.125930. Review.

12.

Contractility parameters of human β-cardiac myosin with the hypertrophic cardiomyopathy mutation R403Q show loss of motor function.

Nag S, Sommese RF, Ujfalusi Z, Combs A, Langer S, Sutton S, Leinwand LA, Geeves MA, Ruppel KM, Spudich JA.

Sci Adv. 2015 Oct 9;1(9):e1500511. doi: 10.1126/sciadv.1500511. eCollection 2015 Oct.

13.

Establishing disease causality for a novel gene variant in familial dilated cardiomyopathy using a functional in-vitro assay of regulated thin filaments and human cardiac myosin.

Pan S, Sommese RF, Sallam KI, Nag S, Sutton S, Miller SM, Spudich JA, Ruppel KM, Ashley EA.

BMC Med Genet. 2015 Oct 26;16:97. doi: 10.1186/s12881-015-0243-5.

14.

Ensemble force changes that result from human cardiac myosin mutations and a small-molecule effector.

Aksel T, Choe Yu E, Sutton S, Ruppel KM, Spudich JA.

Cell Rep. 2015 May 12;11(6):910-920. doi: 10.1016/j.celrep.2015.04.006. Epub 2015 Apr 30.

15.

Effects of troponin T cardiomyopathy mutations on the calcium sensitivity of the regulated thin filament and the actomyosin cross-bridge kinetics of human β-cardiac myosin.

Sommese RF, Nag S, Sutton S, Miller SM, Spudich JA, Ruppel KM.

PLoS One. 2013 Dec 18;8(12):e83403. doi: 10.1371/journal.pone.0083403. eCollection 2013.

16.

Essential role for Galpha13 in endothelial cells during embryonic development.

Ruppel KM, Willison D, Kataoka H, Wang A, Zheng YW, Cornelissen I, Yin L, Xu SM, Coughlin SR.

Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8281-6. Epub 2005 May 26.

17.

Cold-sensitive mutants G680V and G691C of Dictyostelium myosin II confer dramatically different biochemical defects.

Patterson B, Ruppel KM, Wu Y, Spudich JA.

J Biol Chem. 1997 Oct 31;272(44):27612-7.

18.
19.

Structure-function analysis of the motor domain of myosin.

Ruppel KM, Spudich JA.

Annu Rev Cell Dev Biol. 1996;12:543-73. Review.

PMID:
8970737
20.

Myosin structure/function: a combined mutagenesis-crystallography approach.

Ruppel KM, Lorenz M, Spudich JA.

Curr Opin Struct Biol. 1995 Apr;5(2):181-6. Review.

PMID:
7648319
21.

Myosin motor function: structural and mutagenic approaches.

Ruppel KM, Spudich JA.

Curr Opin Cell Biol. 1995 Feb;7(1):89-93. Review.

PMID:
7755994
22.
23.

Enzymatic activities correlate with chimaeric substitutions at the actin-binding face of myosin.

Uyeda TQ, Ruppel KM, Spudich JA.

Nature. 1994 Apr 7;368(6471):567-9.

PMID:
8139694
24.

Molecular genetic approaches to the cytoskeleton in Dictyostelium.

Patterson B, Ruppel KM, Spudich JA.

Curr Opin Genet Dev. 1991 Oct;1(3):378-82. Review.

PMID:
1840895
25.

Molecular genetic tools for study of the cytoskeleton in Dictyostelium.

Egelhoff TT, Titus MA, Manstein DJ, Ruppel KM, Spudich JA.

Methods Enzymol. 1991;196:319-34. No abstract available.

PMID:
2034127
26.

Manipulation and expression of molecular motors in Dictyostelium discoideum.

Manstein DJ, Ruppel KM, Kubalek L, Spudich JA.

J Cell Sci Suppl. 1991;14:63-5. Review.

PMID:
1885661
27.

Purification of a functional recombinant myosin fragment from Dictyostelium discoideum.

Ruppel KM, Egelhoff TT, Spudich JA.

Ann N Y Acad Sci. 1990;582:147-55. No abstract available.

PMID:
2141452
28.

Expression and characterization of a functional myosin head fragment in Dictyostelium discoideum.

Manstein DJ, Ruppel KM, Spudich JA.

Science. 1989 Nov 3;246(4930):656-8.

PMID:
2530629

Supplemental Content

Loading ...
Support Center