Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 19

1.

Bioinspired sonar reflectors as guiding beacons for autonomous navigation.

Simon R, Rupitsch S, Baumann M, Wu H, Peremans H, Steckel J.

Proc Natl Acad Sci U S A. 2020 Jan 6. pii: 201909890. doi: 10.1073/pnas.1909890117. [Epub ahead of print]

PMID:
31907314
2.

Inertial cavitation of lyophilized and rehydrated nanoparticles of poly(L-lactic acid) at 835 kHz and 1.8 MPa ultrasound.

Hiltl P, Grebner A, Fink M, Rupitsch S, Ermert H, Lee G.

Sci Rep. 2019 Aug 21;9(1):12148. doi: 10.1038/s41598-019-48074-8.

3.

Simulation-Based Characterization of Mechanical Parameters and Thickness of Homogeneous Plates Using Guided Waves.

Ponschab M, Kiefer DA, Rupitsch SJ.

IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Dec;66(12):1898-1905. doi: 10.1109/TUFFC.2019.2933699. Epub 2019 Aug 7.

PMID:
31398117
4.

The MyoRobot technology discloses a premature biomechanical decay of skeletal muscle fiber bundles derived from R349P desminopathy mice.

Haug M, Meyer C, Reischl B, Prölß G, Vetter K, Iberl J, Nübler S, Schürmann S, Rupitsch SJ, Heckel M, Pöschel T, Winter L, Herrmann H, Clemen CS, Schröder R, Friedrich O.

Sci Rep. 2019 Jul 24;9(1):10769. doi: 10.1038/s41598-019-46723-6.

5.

Calculating the full leaky Lamb wave spectrum with exact fluid interaction.

Kiefer DA, Ponschab M, Rupitsch SJ, Mayle M.

J Acoust Soc Am. 2019 Jun;145(6):3341. doi: 10.1121/1.5109399.

PMID:
31255154
6.

MyoRobot 2.0: An advanced biomechatronics platform for automated, environmentally controlled skeletal muscle single fiber biomechanics assessment employing inbuilt real-time optical imaging.

Haug M, Meyer C, Reischl B, Prölß G, Nübler S, Schürmann S, Schneidereit D, Heckel M, Pöschel T, Rupitsch SJ, Friedrich O.

Biosens Bioelectron. 2019 Aug 1;138:111284. doi: 10.1016/j.bios.2019.04.052. Epub 2019 May 12.

PMID:
31103932
7.

Implementation and Validation of a Two-Stage Energy Extraction Circuit for a Self Sustained Asset-Tracking System.

Dorsch P, Bartsch T, Hubert F, Milosiu H, Rupitsch SJ.

Sensors (Basel). 2019 Mar 16;19(6). pii: E1330. doi: 10.3390/s19061330.

8.

Classification of Sonar Targets in Air: A Neural Network Approach.

Kroh PK, Simon R, Rupitsch SJ.

Sensors (Basel). 2019 Mar 7;19(5). pii: E1176. doi: 10.3390/s19051176.

9.

Measuring Surface Area of Skin Lesions with 2D and 3D Algorithms.

Mirzaalian Dastjerdi H, Töpfer D, Rupitsch SJ, Maier A.

Int J Biomed Imaging. 2019 Jan 15;2019:4035148. doi: 10.1155/2019/4035148. eCollection 2019.

10.

The MyoRobot: A novel automated biomechatronics system to assess voltage/Ca2+ biosensors and active/passive biomechanics in muscle and biomaterials.

Haug M, Reischl B, Prölß G, Pollmann C, Buckert T, Keidel C, Schürmann S, Hock M, Rupitsch S, Heckel M, Pöschel T, Scheibel T, Haynl C, Kiriaev L, Head SI, Friedrich O.

Biosens Bioelectron. 2018 Apr 15;102:589-599. doi: 10.1016/j.bios.2017.12.003. Epub 2017 Dec 7.

PMID:
29245144
11.

Simultaneous Ultrasonic Measurement of Thickness and Speed of Sound in Elastic Plates Using Coded Excitation Signals.

Kiefer DA, Fink M, Rupitsch SJ.

IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Nov;64(11):1744-1757. doi: 10.1109/TUFFC.2017.2746900. Epub 2017 Aug 30.

PMID:
28866489
12.

Ultrasonic Defect Characterization in Heavy Rotor Forgings by Means of the Synthetic Aperture Focusing Technique and Optimization Methods.

Fendt KT, Mooshofer H, Rupitsch SJ, Ermert H.

IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Jun;63(6):874-85. doi: 10.1109/TUFFC.2016.2557281. Epub 2016 Apr 21.

PMID:
27116736
13.

Hybrid Seminumerical Simulation Scheme to Predict Transducer Outputs of Acoustic Microscopes.

Nierla M, Rupitsch SJ.

IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Feb;63(2):275-89. doi: 10.1109/TUFFC.2015.2510419. Epub 2015 Dec 18.

PMID:
26701343
14.

Complete characterization of piezoceramic materials by means of two block-shaped test samples.

Rupitsch SJ, Ilg J.

IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Jul;62(7):1403-13. doi: 10.1109/TUFFC.2015.006997.

PMID:
26168185
15.

Quantitative reconstruction of a disturbed ultrasound pressure field in a conventional hydrophone measurement.

Chen L, Rupitsch SJ, Lerch R.

IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Jun;60(6):1199-206. doi: 10.1109/TUFFC.2013.2682.

PMID:
25004482
16.

Ultrasonic imaging of complex specimens by processing multiple incident angles in full-angle synthetic aperture focusing technique.

Scharrer T, Schrapp M, Rupitsch SJ, Sutor A, Lerch R.

IEEE Trans Ultrason Ferroelectr Freq Control. 2014 May;61(5):830-9. doi: 10.1109/TUFFC.2014.6805696.

PMID:
24800861
17.

A reliability study of light refractive tomography utilized for noninvasive measurement of ultrasound pressure fields.

Chen L, Rupitsch SJ, Lerch R.

IEEE Trans Ultrason Ferroelectr Freq Control. 2012 May;59(5):915-27. doi: 10.1109/TUFFC.2012.2276.

PMID:
22622976
18.

Optical 3-D metric measurements of local vocal fold deformation characteristics in an in vitro setup.

Huttner B, Sutor A, Luegmair G, Rupitsch SJ, Lerch R, Döllinger M.

IEEE Trans Biomed Eng. 2011 Oct;58(10):2758-66. doi: 10.1109/TBME.2011.2130525. Epub 2011 Mar 22.

PMID:
21427016
19.

Estimation of the surface normal velocity of high frequency ultrasound transducers.

Rupitsch SJ, Kindermann S, Zagar BG.

IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Jan;55(1):225-35. doi: 10.1109/TUFFC.2008.631.

PMID:
18334328

Supplemental Content

Loading ...
Support Center