Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 28

1.

A TMEFF2-regulated cell cycle derived gene signature is prognostic of recurrence risk in prostate cancer.

Georgescu C, Corbin JM, Thibivilliers S, Webb ZD, Zhao YD, Koster J, Fung KM, Asch AS, Wren JD, Ruiz-Echevarría MJ.

BMC Cancer. 2019 May 6;19(1):423. doi: 10.1186/s12885-019-5592-6.

2.

One-Carbon Metabolism in Prostate Cancer: The Role of Androgen Signaling.

Corbin JM, Ruiz-Echevarría MJ.

Int J Mol Sci. 2016 Jul 27;17(8). pii: E1208. doi: 10.3390/ijms17081208. Review.

3.

Analysis of TMEFF2 allografts and transgenic mouse models reveals roles in prostate regeneration and cancer.

Corbin JM, Overcash RF, Wren JD, Coburn A, Tipton GJ, Ezzell JA, McNaughton KK, Fung KM, Kosanke SD, Ruiz-Echevarria MJ.

Prostate. 2016 Jan;76(1):97-113. doi: 10.1002/pros.23103. Epub 2015 Sep 29.

4.

The TMEFF2 tumor suppressor modulates integrin expression, RhoA activation and migration of prostate cancer cells.

Chen X, Corbin JM, Tipton GJ, Yang LV, Asch AS, Ruiz-Echevarría MJ.

Biochim Biophys Acta. 2014 Jun;1843(6):1216-24. doi: 10.1016/j.bbamcr.2014.03.005. Epub 2014 Mar 13.

5.

TMEFF2 modulates the AKT and ERK signaling pathways.

Chen X, Ruiz-Echevarría MJ.

Int J Biochem Mol Biol. 2013 Jul 29;4(2):83-94. Print 2013.

6.

TMEFF2 and SARDH cooperate to modulate one-carbon metabolism and invasion of prostate cancer cells.

Green T, Chen X, Ryan S, Asch AS, Ruiz-Echevarría MJ.

Prostate. 2013 Oct;73(14):1561-75. doi: 10.1002/pros.22706. Epub 2013 Jul 3.

7.

Androgen signaling promotes translation of TMEFF2 in prostate cancer cells via phosphorylation of the α subunit of the translation initiation factor 2.

Overcash RF, Chappell VA, Green T, Geyer CB, Asch AS, Ruiz-Echevarría MJ.

PLoS One. 2013;8(2):e55257. doi: 10.1371/journal.pone.0055257. Epub 2013 Feb 6.

8.

The tumor suppressor activity of the transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) correlates with its ability to modulate sarcosine levels.

Chen X, Overcash R, Green T, Hoffman D, Asch AS, Ruiz-Echevarría MJ.

J Biol Chem. 2011 May 6;286(18):16091-100. doi: 10.1074/jbc.M110.193805. Epub 2011 Mar 10.

9.

Characterization of a general stabilizer element that blocks deadenylation-dependent mRNA decay.

Ruiz-Echevarria MJ, Munshi R, Tomback J, Kinzy TG, Peltz SW.

J Biol Chem. 2001 Aug 17;276(33):30995-1003. Epub 2001 Jun 22.

10.
11.

The yeast hnRNP-like protein Hrp1/Nab4 marks a transcript for nonsense-mediated mRNA decay.

González CI, Ruiz-Echevarría MJ, Vasudevan S, Henry MF, Peltz SW.

Mol Cell. 2000 Mar;5(3):489-99.

12.

Should we kill the messenger? The role of the surveillance complex in translation termination and mRNA turnover.

Czaplinski K, Ruiz-Echevarria MJ, González CI, Peltz SW.

Bioessays. 1999 Aug;21(8):685-96. Review.

PMID:
10440865
13.

The upf3 protein is a component of the surveillance complex that monitors both translation and mRNA turnover and affects viral propagation.

Ruiz-Echevarría MJ, Yasenchak JM, Han X, Dinman JD, Peltz SW.

Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8721-6.

14.

The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs.

Czaplinski K, Ruiz-Echevarria MJ, Paushkin SV, Han X, Weng Y, Perlick HA, Dietz HC, Ter-Avanesyan MD, Peltz SW.

Genes Dev. 1998 Jun 1;12(11):1665-77.

15.

Replication and control of circular bacterial plasmids.

del Solar G, Giraldo R, Ruiz-Echevarría MJ, Espinosa M, Díaz-Orejas R.

Microbiol Mol Biol Rev. 1998 Jun;62(2):434-64. Review.

16.

Translating old drugs into new treatments: ribosomal frameshifting as a target for antiviral agents.

Dinman JD, Ruiz-Echevarria MJ, Peltz SW.

Trends Biotechnol. 1998 Apr;16(4):190-6. Review.

PMID:
9586242
17.
18.

Peptidyl-transferase inhibitors have antiviral properties by altering programmed -1 ribosomal frameshifting efficiencies: development of model systems.

Dinman JD, Ruiz-Echevarria MJ, Czaplinski K, Peltz SW.

Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6606-11.

19.

Making sense of nonsense in yeast.

Ruiz-Echevarria MJ, Czaplinski K, Peltz SW.

Trends Biochem Sci. 1996 Nov;21(11):433-8. Review.

PMID:
8987399
21.
22.

A mutation that decreases the efficiency of plasmid R1 replication leads to the activation of parD, a killer stability system of the plasmid.

Ruiz-Echevarría MJ, de la Torre MA, Díaz-Orejas R.

FEMS Microbiol Lett. 1995 Aug 1;130(2-3):129-35.

PMID:
7649433
23.

Kid, a small protein of the parD stability system of plasmid R1, is an inhibitor of DNA replication acting at the initiation of DNA synthesis.

Ruiz-Echevarría MJ, Giménez-Gallego G, Sabariegos-Jareño R, Díaz-Orejas R.

J Mol Biol. 1995 Apr 7;247(4):568-77.

PMID:
7723014
24.

Identification and characterization of a sequence motif involved in nonsense-mediated mRNA decay.

Zhang S, Ruiz-Echevarria MJ, Quan Y, Peltz SW.

Mol Cell Biol. 1995 Apr;15(4):2231-44.

25.

Transcription of repA, the gene of the initiation protein of the Pseudomonas plasmid pPS10, is autoregulated by interactions of the RepA protein at a symmetrical operator.

García de Viedma D, Giraldo R, Ruiz-Echevarría MJ, Lurz R, Díaz-Orejas R.

J Mol Biol. 1995 Mar 24;247(2):211-23.

PMID:
7707370
26.

Characterization of cis-acting sequences and decay intermediates involved in nonsense-mediated mRNA turnover.

Hagan KW, Ruiz-Echevarria MJ, Quan Y, Peltz SW.

Mol Cell Biol. 1995 Feb;15(2):809-23.

27.
28.

Structural and functional comparison between the stability systems ParD of plasmid R1 and Ccd of plasmid F.

Ruiz-Echevarría MJ, de Torrontegui G, Giménez-Gallego G, Díaz-Orejas R.

Mol Gen Genet. 1991 Mar;225(3):355-62.

PMID:
2017133

Supplemental Content

Loading ...
Support Center