Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 23

1.

Draft Genome Sequence of Lecanicillium sp. Isolate LEC01, a Fungus Capable of Hydrocarbon Degradation.

Radwan O, Gunasekera TS, Ruiz ON.

Microbiol Resour Announc. 2019 Apr 11;8(15). pii: e01744-18. doi: 10.1128/MRA.01744-18.

2.

Draft Genome Sequence of Achromobacter spanius Strain 6, a Soil Bacterium Isolated from a Hydrocarbon-Degrading Microcosm.

Gunasekera TS, Radwan O, Bowen LL, Brown LM, Ruiz ON.

Microbiol Resour Announc. 2018 Sep 20;7(11). pii: e01124-18. doi: 10.1128/MRA.01124-18. eCollection 2018 Sep.

3.

Draft Genome Sequence of Byssochlamys sp. Isolate BYSS01, a Filamentous Fungus Adapted to the Fuel Environment.

Radwan O, Gunasekera TS, Ruiz ON.

Genome Announc. 2018 Mar 8;6(10). pii: e00164-18. doi: 10.1128/genomeA.00164-18.

4.

Draft Genome Sequence of Fusarium fujikuroi, a Fungus Adapted to the Fuel Environment.

Radwan O, Gunasekera TS, Ruiz ON.

Genome Announc. 2018 Jan 18;6(3). pii: e01499-17. doi: 10.1128/genomeA.01499-17.

5.

Draft Genome Sequence of Pseudomonas stutzeri Strain 19, an Isolate Capable of Efficient Degradation of Aromatic Hydrocarbons.

Brown LM, Gunasekera TS, Ruiz ON.

Genome Announc. 2017 Dec 7;5(49). pii: e01373-17. doi: 10.1128/genomeA.01373-17.

6.

A comprehensive multi-omics approach uncovers adaptations for growth and survival of Pseudomonas aeruginosa on n-alkanes.

Grady SL, Malfatti SA, Gunasekera TS, Dalley BK, Lyman MG, Striebich RC, Mayhew MB, Zhou CL, Ruiz ON, Dugan LC.

BMC Genomics. 2017 Apr 28;18(1):334. doi: 10.1186/s12864-017-3708-4.

7.

Transcriptomic Analyses Elucidate Adaptive Differences of Closely Related Strains of Pseudomonas aeruginosa in Fuel.

Gunasekera TS, Bowen LL, Zhou CE, Howard-Byerly SC, Foley WS, Striebich RC, Dugan LC, Ruiz ON.

Appl Environ Microbiol. 2017 May 1;83(10). pii: e03249-16. doi: 10.1128/AEM.03249-16. Print 2017 May 15.

8.

Draft Genome Sequence of Nocardioides luteus Strain BAFB, an Alkane-Degrading Bacterium Isolated from JP-7-Polluted Soil.

Brown LM, Gunasekera TS, Ruiz ON.

Genome Announc. 2017 Jan 26;5(4). pii: e01529-16. doi: 10.1128/genomeA.01529-16.

9.

Draft Genome Sequence of Gordonia sihwensis Strain 9, a Branched Alkane-Degrading Bacterium.

Brown LM, Gunasekera TS, Striebich RC, Ruiz ON.

Genome Announc. 2016 Jun 23;4(3). pii: e00622-16. doi: 10.1128/genomeA.00622-16.

10.

Draft Genome Sequence of Pseudomonas frederiksbergensis SI8, a Psychrotrophic Aromatic-Degrading Bacterium.

Ruiz ON, Brown LM, Striebich RC, Mueller SS, Gunasekera TS.

Genome Announc. 2015 Jul 16;3(4). pii: e00811-15. doi: 10.1128/genomeA.00811-15.

11.

Draft Genome Sequence of Rhodovulum sp. Strain NI22, a Naphthalene-Degrading Marine Bacterium.

Brown LM, Gunasekera TS, Bowen LL, Ruiz ON.

Genome Announc. 2015 Jan 22;3(1). pii: e01475-14. doi: 10.1128/genomeA.01475-14.

12.

Draft Genome Sequence of Pseudomonas aeruginosa ATCC 33988, a Bacterium Highly Adapted to Fuel-Polluted Environments.

Brown LM, Gunasekera TS, Ruiz ON.

Genome Announc. 2014 Nov 6;2(6). pii: e01113-14. doi: 10.1128/genomeA.01113-14.

13.

Fate of malathion and a phosphonic acid in activated sludge with varying solids retention times.

Janeczko AK, Walters EB, Schuldt SJ, Magnuson ML, Willison SA, Brown LM, Ruiz ON, Felker DL, Racz L.

Water Res. 2014 Jun 15;57:127-39. doi: 10.1016/j.watres.2014.03.031. Epub 2014 Mar 22.

PMID:
24709533
14.

Transcriptional profiling suggests that multiple metabolic adaptations are required for effective proliferation of Pseudomonas aeruginosa in jet fuel.

Gunasekera TS, Striebich RC, Mueller SS, Strobel EM, Ruiz ON.

Environ Sci Technol. 2013;47(23):13449-58. doi: 10.1021/es403163k. Epub 2013 Nov 12.

PMID:
24164330
15.

Graphene oxide: a nonspecific enhancer of cellular growth.

Ruiz ON, Fernando KA, Wang B, Brown NA, Luo PG, McNamara ND, Vangsness M, Sun YP, Bunker CE.

ACS Nano. 2011 Oct 25;5(10):8100-7. doi: 10.1021/nn202699t. Epub 2011 Sep 29.

PMID:
21932790
16.

Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase.

Ruiz ON, Alvarez D, Gonzalez-Ruiz G, Torres C.

BMC Biotechnol. 2011 Aug 12;11:82. doi: 10.1186/1472-6750-11-82.

17.

Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability.

Ruiz ON, Alvarez D, Torres C, Roman L, Daniell H.

Plant Biotechnol J. 2011 Jun;9(5):609-17. doi: 10.1111/j.1467-7652.2011.00616.x. Epub 2011 Apr 24.

18.

Genetic engineering to enhance mercury phytoremediation.

Ruiz ON, Daniell H.

Curr Opin Biotechnol. 2009 Apr;20(2):213-9. doi: 10.1016/j.copbio.2009.02.010. Epub 2009 Mar 26. Review.

19.
20.
21.

Characterization of heterologous multigene operons in transgenic chloroplasts: transcription, processing, and translation.

Quesada-Vargas T, Ruiz ON, Daniell H.

Plant Physiol. 2005 Jul;138(3):1746-62. Epub 2005 Jun 24.

22.

Chloroplast genetic engineering to improve agronomic traits.

Daniell H, Ruiz ON, Dhingra A.

Methods Mol Biol. 2005;286:111-38.

PMID:
15310917
23.

Phytoremediation of organomercurial compounds via chloroplast genetic engineering.

Ruiz ON, Hussein HS, Terry N, Daniell H.

Plant Physiol. 2003 Jul;132(3):1344-52.

Supplemental Content

Support Center