Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 41

1.

Identification of salicylic acid-independent responses in an Arabidopsis phosphatidylinositol 4-kinase beta double mutant.

Kalachova T, Janda M, Šašek V, Ortmannová J, Nováková P, Dobrev IP, Kravets V, Guivarc'h A, Moura D, Burketová L, Valentová O, Ruelland E.

Ann Bot. 2019 Jun 28. pii: mcz112. doi: 10.1093/aob/mcz112. [Epub ahead of print]

PMID:
31250883
2.

The SCOOP12 peptide regulates defense response and root elongation in Arabidopsis thaliana.

Gully K, Pelletier S, Guillou MC, Ferrand M, Aligon S, Pokotylo I, Perrin A, Vergne E, Fagard M, Ruelland E, Grappin P, Bucher E, Renou JP, Aubourg S.

J Exp Bot. 2019 Feb 20;70(4):1349-1365. doi: 10.1093/jxb/ery454.

3.

The phosphatidic acid paradox: Too many actions for one molecule class? Lessons from plants.

Pokotylo I, Kravets V, Martinec J, Ruelland E.

Prog Lipid Res. 2018 Jul;71:43-53. doi: 10.1016/j.plipres.2018.05.003. Epub 2018 May 26. Review.

PMID:
29842906
4.

Glycerolipid analysis during desiccation and recovery of the resurrection plant Xerophyta humilis (Bak) Dur and Schinz.

Tshabuse F, Farrant JM, Humbert L, Moura D, Rainteau D, Espinasse C, Idrissi A, Merlier F, Acket S, Rafudeen MS, Thomasset B, Ruelland E.

Plant Cell Environ. 2018 Mar;41(3):533-547. doi: 10.1111/pce.13063. Epub 2017 Nov 10.

PMID:
28865108
5.

Diacylglycerol kinases activate tobacco NADPH oxidase-dependent oxidative burst in response to cryptogein.

Cacas JL, Gerbeau-Pissot P, Fromentin J, Cantrel C, Thomas D, Jeannette E, Kalachova T, Mongrand S, Simon-Plas F, Ruelland E.

Plant Cell Environ. 2017 Apr;40(4):585-598. doi: 10.1111/pce.12771. Epub 2016 Jul 20.

PMID:
27272019
6.

Editorial: Lipid Signaling in Plant Development and Responses to Environmental Stresses.

Ruelland E, Valentova O.

Front Plant Sci. 2016 Mar 17;7:324. doi: 10.3389/fpls.2016.00324. eCollection 2016. No abstract available.

7.

Corrigendum: Salicylic acid modulates levels of phosphoinositide dependent-phospholipase C substrates and products to remodel the Arabidopsis suspension cell transcriptome.

Ruelland E, Pokotylo I, Djafi N, Cantrel C, Repellin A, Zachowski A.

Front Plant Sci. 2016 Jan 28;7:36. doi: 10.3389/fpls.2016.00036. eCollection 2016.

8.

Erratum to: Molecular mechanisms of gravity perception and signal transduction in plants.

Kolesnikov YS, Kretynin SV, Volotovsky ID, Kordyum EL, Ruelland E, Kravets VS.

Protoplasma. 2016 Jul;253(4):1005. No abstract available.

PMID:
26733389
9.

Arabidopsis non-specific phospholipase C1: characterization and its involvement in response to heat stress.

Krčková Z, Brouzdová J, Daněk M, Kocourková D, Rainteau D, Ruelland E, Valentová O, Pejchar P, Martinec J.

Front Plant Sci. 2015 Nov 4;6:928. doi: 10.3389/fpls.2015.00928. eCollection 2015.

10.

Molecular mechanisms of gravity perception and signal transduction in plants.

Kolesnikov YS, Kretynin SV, Volotovsky ID, Kordyum EL, Ruelland E, Kravets VS.

Protoplasma. 2016 Jul;253(4):987-1004. doi: 10.1007/s00709-015-0859-5. Epub 2015 Jul 28. Review. Erratum in: Protoplasma. 2016 Jul;253(4):1005.

11.

Importance of phosphoinositide-dependent signaling pathways in the control of gene expression in resting cells and in response to phytohormones.

Kalachova T, Kravets V, Zachowski A, Ruelland E.

Plant Signal Behav. 2015;10(5):e1019983. doi: 10.1080/15592324.2015.1019983.

12.

The Arabidopsis pi4kIIIβ1β2 double mutant is salicylic acid-overaccumulating: a new example of salicylic acid influence on plant stature.

Janda M, Šašek V, Ruelland E.

Plant Signal Behav. 2014;9(12):e977210. doi: 10.4161/15592324.2014.977210.

13.

Salicylic acid modulates levels of phosphoinositide dependent-phospholipase C substrates and products to remodel the Arabidopsis suspension cell transcriptome.

Ruelland E, Pokotylo I, Djafi N, Cantrel C, Repellin A, Zachowski A.

Front Plant Sci. 2014 Nov 11;5:608. doi: 10.3389/fpls.2014.00608. eCollection 2014. Erratum in: Front Plant Sci. 2016;7:36.

14.

Constitutive salicylic acid accumulation in pi4kIIIβ1β2 Arabidopsis plants stunts rosette but not root growth.

Sašek V, Janda M, Delage E, Puyaubert J, Guivarc'h A, López Maseda E, Dobrev PI, Caius J, Bóka K, Valentová O, Burketová L, Zachowski A, Ruelland E.

New Phytol. 2014 Aug;203(3):805-16. doi: 10.1111/nph.12822. Epub 2014 Apr 24.

15.

The phosphoinositide dependent-phospholipase C pathway differentially controls the basal expression of DREB1 and DREB2 genes.

Ruelland E, Djafi N, Zachowski A.

Plant Signal Behav. 2013 Oct;8(10):doi: 10.4161/psb.26895.

PMID:
24494245
16.

The Arabidopsis DREB2 genetic pathway is constitutively repressed by basal phosphoinositide-dependent phospholipase C coupled to diacylglycerol kinase.

Djafi N, Vergnolle C, Cantrel C, Wietrzyñski W, Delage E, Cochet F, Puyaubert J, Soubigou-Taconnat L, Gey D, Collin S, Balzergue S, Zachowski A, Ruelland E.

Front Plant Sci. 2013 Aug 8;4:307. doi: 10.3389/fpls.2013.00307. eCollection 2013.

17.

Plant phosphoinositide-dependent phospholipases C: variations around a canonical theme.

Pokotylo I, Kolesnikov Y, Kravets V, Zachowski A, Ruelland E.

Biochimie. 2014 Jan;96:144-57. doi: 10.1016/j.biochi.2013.07.004. Epub 2013 Jul 12. Review.

PMID:
23856562
18.

The intrinsically disordered C-terminal region of Arabidopsis thaliana TCP8 transcription factor acts both as a transactivation and self-assembly domain.

Valsecchi I, Guittard-Crilat E, Maldiney R, Habricot Y, Lignon S, Lebrun R, Miginiac E, Ruelland E, Jeannette E, Lebreton S.

Mol Biosyst. 2013 Sep;9(9):2282-95. doi: 10.1039/c3mb70128j.

PMID:
23760157
19.

Phosphoglycerolipids are master players in plant hormone signal transduction.

Janda M, Planchais S, Djafi N, Martinec J, Burketova L, Valentova O, Zachowski A, Ruelland E.

Plant Cell Rep. 2013 Jun;32(6):839-51. doi: 10.1007/s00299-013-1399-0. Epub 2013 Mar 8. Review.

20.

Multiple reaction monitoring mass spectrometry is a powerful tool to study glycerolipid composition in plants with different level of desaturase activity.

Djafi N, Humbert L, Rainteau D, Cantrel C, Zachowski A, Ruelland E.

Plant Signal Behav. 2013 May;8(5):e24118. doi: 10.4161/psb.24118. Epub 2013 Mar 7.

21.

The plant non-specific phospholipase C gene family. Novel competitors in lipid signalling.

Pokotylo I, Pejchar P, Potocký M, Kocourková D, Krčková Z, Ruelland E, Kravets V, Martinec J.

Prog Lipid Res. 2013 Jan;52(1):62-79. doi: 10.1016/j.plipres.2012.09.001. Epub 2012 Oct 23. Review.

PMID:
23089468
22.

Signal transduction pathways involving phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate: convergences and divergences among eukaryotic kingdoms.

Delage E, Puyaubert J, Zachowski A, Ruelland E.

Prog Lipid Res. 2013 Jan;52(1):1-14. doi: 10.1016/j.plipres.2012.08.003. Epub 2012 Sep 8. Review.

PMID:
22981911
23.

Eat in or take away? How phosphatidylinositol 4-kinases feed the phospholipase C pathway with substrate.

Delage E, Ruelland E, Zachowski A, Puyaubert J.

Plant Signal Behav. 2012 Sep 1;7(9):1197-9. doi: 10.4161/psb.21305. Epub 2012 Aug 17.

24.

Acyl chains of phospholipase D transphosphatidylation products in Arabidopsis cells: a study using multiple reaction monitoring mass spectrometry.

Rainteau D, Humbert L, Delage E, Vergnolle C, Cantrel C, Maubert MA, Lanfranchi S, Maldiney R, Collin S, Wolf C, Zachowski A, Ruelland E.

PLoS One. 2012;7(7):e41985. doi: 10.1371/journal.pone.0041985. Epub 2012 Jul 25.

25.

Arabidopsis type-III phosphatidylinositol 4-kinases β1 and β2 are upstream of the phospholipase C pathway triggered by cold exposure.

Delage E, Ruelland E, Guillas I, Zachowski A, Puyaubert J.

Plant Cell Physiol. 2012 Mar;53(3):565-76. doi: 10.1093/pcp/pcs011. Epub 2012 Feb 8.

PMID:
22318862
26.

Assessment of mitochondria as a compartment for phosphatidylinositol synthesis in Solanum tuberosum.

Davy de Virville J, Brown S, Cochet F, Soler MN, Hoffelt M, Ruelland E, Zachowski A, Collin S.

Plant Physiol Biochem. 2010 Dec;48(12):952-60. doi: 10.1016/j.plaphy.2010.09.004. Epub 2010 Sep 18.

PMID:
20947365
27.

Phospholipase D activation is an early component of the salicylic acid signaling pathway in Arabidopsis cell suspensions.

Krinke O, Flemr M, Vergnolle C, Collin S, Renou JP, Taconnat L, Yu A, Burketová L, Valentová O, Zachowski A, Ruelland E.

Plant Physiol. 2009 May;150(1):424-36. doi: 10.1104/pp.108.133595. Epub 2009 Mar 20.

28.

The hydrophobic segment of Arabidopsis thaliana cluster I diacylglycerol kinases is sufficient to target the proteins to cell membranes.

Vaultier MN, Cantrel C, Guerbette F, Boutté Y, Vergnolle C, Ciçek D, Bolte S, Zachowski A, Ruelland E.

FEBS Lett. 2008 May 28;582(12):1743-8. doi: 10.1016/j.febslet.2008.04.042. Epub 2008 May 6.

29.

Phosphatidylinositol 4-kinase activation is an early response to salicylic acid in Arabidopsis suspension cells.

Krinke O, Ruelland E, Valentová O, Vergnolle C, Renou JP, Taconnat L, Flemr M, Burketová L, Zachowski A.

Plant Physiol. 2007 Jul;144(3):1347-59. Epub 2007 May 11.

30.

Desaturase mutants reveal that membrane rigidification acts as a cold perception mechanism upstream of the diacylglycerol kinase pathway in Arabidopsis cells.

Vaultier MN, Cantrel C, Vergnolle C, Justin AM, Demandre C, Benhassaine-Kesri G, Ciçek D, Zachowski A, Ruelland E.

FEBS Lett. 2006 Jul 24;580(17):4218-23. Epub 2006 Jul 5.

31.

The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions.

Vergnolle C, Vaultier MN, Taconnat L, Renou JP, Kader JC, Zachowski A, Ruelland E.

Plant Physiol. 2005 Nov;139(3):1217-33. Epub 2005 Oct 28.

32.

Activation of phospholipases C and D is an early response to a cold exposure in Arabidopsis suspension cells.

Ruelland E, Cantrel C, Gawer M, Kader JC, Zachowski A.

Plant Physiol. 2002 Oct;130(2):999-1007.

33.

The role of active site arginines of sorghum NADP-malate dehydrogenase in thioredoxin-dependent activation and activity.

Schepens I, Ruelland E, Miginiac-Maslow M, Le Maréchal P, Decottignies P.

J Biol Chem. 2000 Nov 17;275(46):35792-8.

34.

The dimer contact area of sorghum NADP-malate dehydrogenase: role of aspartate 101 in dimer stability and catalytic activity.

Schepens I, Decottignies P, Ruelland E, Johansson K, Miginiac-Maslow M.

FEBS Lett. 2000 Apr 14;471(2-3):240-4.

35.

Oxidation-reduction properties of the regulatory disulfides of sorghum chloroplast nicotinamide adenine dinucleotide phosphate-malate dehydrogenase.

Hirasawa M, Ruelland E, Schepens I, Issakidis-Bourguet E, Miginiac-Maslow M, Knaff DB.

Biochemistry. 2000 Mar 28;39(12):3344-50.

PMID:
10727227
36.

Regulation of chloroplast enzyme activities by thioredoxins: activation or relief from inhibition?

Ruelland E, Miginiac-Maslow M.

Trends Plant Sci. 1999 Apr;4(4):136-141.

PMID:
10322547
37.

The internal Cys-207 of sorghum leaf NADP-malate dehydrogenase can form mixed disulphides with thioredoxin.

Goyer A, Decottignies P, Lemaire S, Ruelland E, Issakidis-Bourguet E, Jacquot JP, Miginiac-Maslow M.

FEBS Lett. 1999 Feb 12;444(2-3):165-9.

38.

The autoinhibition of sorghum NADP malate dehydrogenase is mediated by a C-terminal negative charge.

Ruelland E, Johansson K, Decottignies P, Djukic N, Miginiac-Maslow M.

J Biol Chem. 1998 Dec 11;273(50):33482-8.

39.

The single mutation Trp35-->Ala in the 35-40 redox site of Chlamydomonas reinhardtii thioredoxin h affects its biochemical activity and the pH dependence of C36-C39 1H-13C NMR.

Krimm I, Lemaire S, Ruelland E, Miginiac-Maslow M, Jaquot JP, Hirasawa M, Knaff DB, Lancelin JM.

Eur J Biochem. 1998 Jul 1;255(1):185-95.

40.

An internal cysteine is involved in the thioredoxin-dependent activation of sorghum leaf NADP-malate dehydrogenase.

Ruelland E, Lemaire-Chamley M, Le Maréchal P, Issakidis-Bourguet E, Djukic N, Miginiac-Maslow M.

J Biol Chem. 1997 Aug 8;272(32):19851-7.

41.

An active-site cysteine of sorghum leaf NADP-malate dehydrogenase studied by site-directed mutagenesis.

Lemaire M, Issakidis E, Ruelland E, Decottignies P, Miginiac-Maslow M.

FEBS Lett. 1996 Mar 11;382(1-2):137-40.

Supplemental Content

Loading ...
Support Center