Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 58

1.

Self-assembly of MinE on the membrane underlies formation of the MinE ring to sustain function of the Escherichia coli Min system.

Zheng M, Chiang YL, Lee HL, Kong LR, Hsu ST, Hwang IS, Rothfield LI, Shih YL.

J Biol Chem. 2014 Aug 1;289(31):21252-66. doi: 10.1074/jbc.M114.571976. Epub 2014 Jun 9.

2.
3.

Membrane localization of MinD is mediated by a C-terminal motif that is conserved across eubacteria, archaea, and chloroplasts.

Szeto TH, Rowland SL, Rothfield LI, King GF.

Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15693-8. Epub 2002 Nov 7.

4.

Polar explorers: membrane proteins that determine division site placement.

Rothfield LI, Shih YL, King G.

Cell. 2001 Jul 13;106(1):13-6. Review. No abstract available. Erratum in: Cell 2002 Aug 23;110(4):533.

5.
6.

Structural basis for the topological specificity function of MinE.

King GF, Shih YL, Maciejewski MW, Bains NP, Pan B, Rowland SL, Mullen GP, Rothfield LI.

Nat Struct Biol. 2000 Nov;7(11):1013-7.

PMID:
11062554
7.
8.

Membrane redistribution of the Escherichia coli MinD protein induced by MinE.

Rowland SL, Fu X, Sayed MA, Zhang Y, Cook WR, Rothfield LI.

J Bacteriol. 2000 Feb;182(3):613-9.

9.

Backbone and side-chain 1H, 15N, and 13C assignments for the topological specificity domain of the MinE cell division protein.

King GF, Pan B, Maciejewski MW, Rowland SL, Rothfield LI, Mullen GP.

J Biomol NMR. 1999 Apr;13(4):395-6. No abstract available.

PMID:
10353200
10.

The dimerization and topological specificity functions of MinE reside in a structurally autonomous C-terminal domain.

King GF, Rowland SL, Pan B, Mackay JP, Mullen GP, Rothfield LI.

Mol Microbiol. 1999 Feb;31(4):1161-9.

11.

Nucleoid-independent identification of cell division sites in Escherichia coli.

Cook WR, Rothfield LI.

J Bacteriol. 1999 Mar;181(6):1900-5.

13.

Bacterial cell division: the cycle of the ring.

Rothfield LI, Justice SS.

Cell. 1997 Mar 7;88(5):581-4. Review. No abstract available.

14.
15.

How do bacteria decide where to divide?

Rothfield LI, Zhao CR.

Cell. 1996 Jan 26;84(2):183-6. Review. No abstract available.

16.
17.

Development of the cell-division site in FtsA- filaments.

Cook WR, Rothfield LI.

Mol Microbiol. 1994 Nov;14(3):497-503.

PMID:
7885232
18.

Early stages in development of the Escherichia coli cell-division site.

Cook WR, Rothfield LI.

Mol Microbiol. 1994 Nov;14(3):485-95.

PMID:
7885231
19.

Bacterial chromosome segregation.

Rothfield LI.

Cell. 1994 Jul 1;77(7):963-6. Review. No abstract available.

PMID:
8020102
20.
21.
23.

Transcriptional organization of the rfaGBIJ locus of Salmonella typhimurium.

Brazas R, Davie E, Farewell A, Rothfield LI.

J Bacteriol. 1991 Oct;173(19):6168-73.

24.
25.

Biogenesis of cell division sites in ftsA and ftsZ filaments.

Cook WR, Rothfield LI.

Res Microbiol. 1991 Feb-Apr;142(2-3):321-4.

PMID:
1925030
26.

Biogenesis of the Escherichia coli cell division system.

Rothfield LI, Cook WR, de Boer PA.

Cold Spring Harb Symp Quant Biol. 1991;56:751-6. No abstract available.

PMID:
1819522
27.

Biosynthesis of a membrane adhesion zone fraction throughout the cell cycle of Escherichia coli.

Joseleau-Petit D, Kepes F, Peutat L, D'Ari R, Rothfield LI.

J Bacteriol. 1990 Nov;172(11):6573-5.

28.

Central role for the Escherichia coli minC gene product in two different cell division-inhibition systems.

de Boer PA, Crossley RE, Rothfield LI.

Proc Natl Acad Sci U S A. 1990 Feb;87(3):1129-33.

29.

Localization of septation sites.

Rothfield LI, DeBoer P, Cook WR.

Res Microbiol. 1990 Jan;141(1):57-63. Review. No abstract available.

PMID:
2194250
30.

Bacterial cell division.

de Boer PA, Cook WR, Rothfield LI.

Annu Rev Genet. 1990;24:249-74. Review. No abstract available.

PMID:
2088169
31.

Compartmentalization of the periplasm at cell division sites in Escherichia coli as shown by fluorescence photobleaching experiments.

Foley M, Brass JM, Birmingham J, Cook WR, Garland PB, Higgins CF, Rothfield LI.

Mol Microbiol. 1989 Oct;3(10):1329-36.

PMID:
2693893
32.
34.

Differentiation of the bacterial cell division site.

Cook WR, de Boer PA, Rothfield LI.

Int Rev Cytol. 1989;118:1-31. Review. No abstract available.

PMID:
2691424
35.

Periseptal annuli: organelles involved in the bacterial cell division process.

Rothfield LI, Cook WR.

Microbiol Sci. 1988 Jun;5(6):182-5. Review.

PMID:
3079236
36.
37.

Proposed mechanism for generation and localization of new cell division sites during the division cycle of Escherichia coli.

Cook WR, Kepes F, Joseleau-Petit D, MacAlister TJ, Rothfield LI.

Proc Natl Acad Sci U S A. 1987 Oct;84(20):7144-8.

39.

Compartmentalization of the periplasmic space at division sites in gram-negative bacteria.

Cook WR, MacAlister TJ, Rothfield LI.

J Bacteriol. 1986 Dec;168(3):1430-8.

40.
42.

Genetic basis of minicell formation in Escherichia coli K-12.

Davie E, Sydnor K, Rothfield LI.

J Bacteriol. 1984 Jun;158(3):1202-3.

43.
45.

The periseptal annulus: An organelle associated with cell division in Gram-negative bacteria.

Macalister TJ, Macdonald B, Rothfield LI.

Proc Natl Acad Sci U S A. 1983 Mar;80(5):1372-6.

46.

Cloning genes for bacterial glycosyltransferases.

Creeger ES, Rothfield LI.

Methods Enzymol. 1982;83:326-31. No abstract available.

PMID:
6212748
47.
48.
50.

Interactions between lipopolysaccharide and phosphatidylethanolamine in molecular monolayers.

Fried VA, Rothfield LI.

Biochim Biophys Acta. 1978 Dec 4;514(1):69-82.

PMID:
363151

Supplemental Content

Loading ...
Support Center