Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 55

1.

Centrosome loss results in an unstable genome and malignant prostate tumors.

Wang M, Nagle RB, Knudsen BS, Cress AE, Rogers GC.

Oncogene. 2019 Sep 2. doi: 10.1038/s41388-019-0995-z. [Epub ahead of print]

PMID:
31477840
2.

Plk4 Regulates Centriole Asymmetry and Spindle Orientation in Neural Stem Cells.

Gambarotto D, Pennetier C, Ryniawec JM, Buster DW, Gogendeau D, Goupil A, Nano M, Simon A, Blanc D, Racine V, Kimata Y, Rogers GC, Basto R.

Dev Cell. 2019 Jul 1;50(1):11-24.e10. doi: 10.1016/j.devcel.2019.04.036. Epub 2019 May 23.

3.

A method of quantifying centrosomes at the single-cell level in human normal and cancer tissue.

Wang M, Knudsen BS, Nagle RB, Rogers GC, Cress AE.

Mol Biol Cell. 2019 Mar 21;30(7):811-819. doi: 10.1091/mbc.E18-10-0651. Epub 2019 Jan 30.

4.

Cul4 ubiquitin ligase cofactor DCAF12 promotes neurotransmitter release and homeostatic plasticity.

Patrón LA, Nagatomo K, Eves DT, Imad M, Young K, Torvund M, Guo X, Rogers GC, Zinsmaier KE.

J Cell Biol. 2019 Mar 4;218(3):993-1010. doi: 10.1083/jcb.201805099. Epub 2019 Jan 22.

5.

Asterless is a Polo-like kinase 4 substrate that both activates and inhibits kinase activity depending on its phosphorylation state.

Boese CJ, Nye J, Buster DW, McLamarrah TA, Byrnes AE, Slep KC, Rusan NM, Rogers GC.

Mol Biol Cell. 2018 Nov 15;29(23):2874-2886. doi: 10.1091/mbc.E18-07-0445. Epub 2018 Sep 26.

6.

Vesicular trafficking plays a role in centriole disengagement and duplication.

Xie S, Reinecke JB, Farmer T, Bahl K, Yeow I, Nichols BJ, McLamarrah TA, Naslavsky N, Rogers GC, Caplan S.

Mol Biol Cell. 2018 Nov 1;29(22):2622-2631. doi: 10.1091/mbc.E18-04-0241. Epub 2018 Sep 6.

7.

An ordered pattern of Ana2 phosphorylation by Plk4 is required for centriole assembly.

McLamarrah TA, Buster DW, Galletta BJ, Boese CJ, Ryniawec JM, Hollingsworth NA, Byrnes AE, Brownlee CW, Slep KC, Rusan NM, Rogers GC.

J Cell Biol. 2018 Apr 2;217(4):1217-1231. doi: 10.1083/jcb.201605106. Epub 2018 Mar 1.

8.

A basal cell defect promotes budding of prostatic intraepithelial neoplasia.

Wang M, Nagle RB, Knudsen BS, Rogers GC, Cress AE.

J Cell Sci. 2017 Jan 1;130(1):104-110. doi: 10.1242/jcs.188177. Epub 2016 Sep 8.

9.

A centrosome interactome provides insight into organelle assembly and reveals a non-duplication role for Plk4.

Galletta BJ, Fagerstrom CJ, Schoborg TA, McLamarrah TA, Ryniawec JM, Buster DW, Slep KC, Rogers GC, Rusan NM.

Nat Commun. 2016 Aug 25;7:12476. doi: 10.1038/ncomms12476.

10.

Condensin II Regulates Interphase Chromatin Organization Through the Mrg-Binding Motif of Cap-H2.

Wallace HA, Klebba JE, Kusch T, Rogers GC, Bosco G.

G3 (Bethesda). 2015 Mar 9;5(5):803-17. doi: 10.1534/g3.115.016634.

11.

Drosophila casein kinase I alpha regulates homolog pairing and genome organization by modulating condensin II subunit Cap-H2 levels.

Nguyen HQ, Nye J, Buster DW, Klebba JE, Rogers GC, Bosco G.

PLoS Genet. 2015 Feb 27;11(2):e1005014. doi: 10.1371/journal.pgen.1005014. eCollection 2015.

12.

Two Polo-like kinase 4 binding domains in Asterless perform distinct roles in regulating kinase stability.

Klebba JE, Galletta BJ, Nye J, Plevock KM, Buster DW, Hollingsworth NA, Slep KC, Rusan NM, Rogers GC.

J Cell Biol. 2015 Feb 16;208(4):401-14. doi: 10.1083/jcb.201410105.

13.

Autoinhibition and relief mechanism for Polo-like kinase 4.

Klebba JE, Buster DW, McLamarrah TA, Rusan NM, Rogers GC.

Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):E657-66. doi: 10.1073/pnas.1417967112. Epub 2015 Feb 2.

14.

Condensins exert force on chromatin-nuclear envelope tethers to mediate nucleoplasmic reticulum formation in Drosophila melanogaster.

Bozler J, Nguyen HQ, Rogers GC, Bosco G.

G3 (Bethesda). 2014 Dec 30;5(3):341-52. doi: 10.1534/g3.114.015685.

15.

The F-box protein Slmb restricts the activity of aPKC to polarize epithelial cells.

Skwarek LC, Windler SL, de Vreede G, Rogers GC, Bilder D.

Development. 2014 Aug;141(15):2978-83. doi: 10.1242/dev.109694.

16.

Drosophila pericentrin requires interaction with calmodulin for its function at centrosomes and neuronal basal bodies but not at sperm basal bodies.

Galletta BJ, Guillen RX, Fagerstrom CJ, Brownlee CW, Lerit DA, Megraw TL, Rogers GC, Rusan NM.

Mol Biol Cell. 2014 Sep 15;25(18):2682-94. doi: 10.1091/mbc.E13-10-0617. Epub 2014 Jul 16.

17.

The use of cultured Drosophila cells for studying the microtubule cytoskeleton.

Nye J, Buster DW, Rogers GC.

Methods Mol Biol. 2014;1136:81-101. doi: 10.1007/978-1-4939-0329-0_6.

PMID:
24633795
18.

Polo-like kinase 4 autodestructs by generating its Slimb-binding phosphodegron.

Klebba JE, Buster DW, Nguyen AL, Swatkoski S, Gucek M, Rusan NM, Rogers GC.

Curr Biol. 2013 Nov 18;23(22):2255-2261. doi: 10.1016/j.cub.2013.09.019. Epub 2013 Oct 31.

19.

Maintenance of interphase chromosome compaction and homolog pairing in Drosophila is regulated by the condensin cap-h2 and its partner Mrg15.

Smith HF, Roberts MA, Nguyen HQ, Peterson M, Hartl TA, Wang XJ, Klebba JE, Rogers GC, Bosco G.

Genetics. 2013 Sep;195(1):127-46. doi: 10.1534/genetics.113.153544. Epub 2013 Jul 2.

20.

SCFSlimb ubiquitin ligase suppresses condensin II-mediated nuclear reorganization by degrading Cap-H2.

Buster DW, Daniel SG, Nguyen HQ, Windler SL, Skwarek LC, Peterson M, Roberts M, Meserve JH, Hartl T, Klebba JE, Bilder D, Bosco G, Rogers GC.

J Cell Biol. 2013 Apr 1;201(1):49-63. doi: 10.1083/jcb.201207183. Epub 2013 Mar 25.

21.

Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization.

Mennella V, Keszthelyi B, McDonald KL, Chhun B, Kan F, Rogers GC, Huang B, Agard DA.

Nat Cell Biol. 2012 Nov;14(11):1159-68. doi: 10.1038/ncb2597. Epub 2012 Oct 21.

22.

The structure of the plk4 cryptic polo box reveals two tandem polo boxes required for centriole duplication.

Slevin LK, Nye J, Pinkerton DC, Buster DW, Rogers GC, Slep KC.

Structure. 2012 Nov 7;20(11):1905-17. doi: 10.1016/j.str.2012.08.025. Epub 2012 Sep 20.

23.

Show me your license, please: deregulation of centriole duplication mechanisms that promote amplification.

Brownlee CW, Rogers GC.

Cell Mol Life Sci. 2013 Mar;70(6):1021-34. doi: 10.1007/s00018-012-1102-6. Epub 2012 Aug 15. Review.

PMID:
22892665
24.

Defining components of the ß-catenin destruction complex and exploring its regulation and mechanisms of action during development.

Roberts DM, Pronobis MI, Alexandre KM, Rogers GC, Poulton JS, Schneider DE, Jung KC, McKay DJ, Peifer M.

PLoS One. 2012;7(2):e31284. doi: 10.1371/journal.pone.0031284. Epub 2012 Feb 16.

25.

The Protein Phosphatase 2A regulatory subunit Twins stabilizes Plk4 to induce centriole amplification.

Brownlee CW, Klebba JE, Buster DW, Rogers GC.

J Cell Biol. 2011 Oct 17;195(2):231-43. doi: 10.1083/jcb.201107086. Epub 2011 Oct 10.

26.

Angiogenic factor signaling regulates centrosome duplication in endothelial cells of developing blood vessels.

Taylor SM, Nevis KR, Park HL, Rogers GC, Rogers SL, Cook JG, Bautch VL.

Blood. 2010 Oct 21;116(16):3108-17. doi: 10.1182/blood-2010-01-266197. Epub 2010 Jul 27.

27.

Preparation of Drosophila S2 cells for light microscopy.

Buster DW, Nye J, Klebba JE, Rogers GC.

J Vis Exp. 2010 Jun 3;(40). pii: 1982. doi: 10.3791/1982.

28.

Spindle assembly: more than just microtubules.

Rogers GC.

Curr Biol. 2010 Apr 27;20(8):R364-6. doi: 10.1016/j.cub.2010.02.040.

29.

The Drosophila kinesin-13, KLP59D, impacts Pacman- and Flux-based chromosome movement.

Rath U, Rogers GC, Tan D, Gomez-Ferreria MA, Buster DW, Sosa HJ, Sharp DJ.

Mol Biol Cell. 2009 Nov;20(22):4696-705. doi: 10.1091/mbc.E09-07-0557. Epub 2009 Sep 30.

30.

Centrosome function: sometimes less is more.

Rusan NM, Rogers GC.

Traffic. 2009 May;10(5):472-81. doi: 10.1111/j.1600-0854.2009.00880.x. Epub 2009 Jan 24. Review.

31.

The SCF Slimb ubiquitin ligase regulates Plk4/Sak levels to block centriole reduplication.

Rogers GC, Rusan NM, Roberts DM, Peifer M, Rogers SL.

J Cell Biol. 2009 Jan 26;184(2):225-39. doi: 10.1083/jcb.200808049.

32.

Cdt1 and Cdc6 are destabilized by rereplication-induced DNA damage.

Hall JR, Lee HO, Bunker BD, Dorn ES, Rogers GC, Duronio RJ, Cook JG.

J Biol Chem. 2008 Sep 12;283(37):25356-63. doi: 10.1074/jbc.M802667200. Epub 2008 Jul 10.

33.

A multicomponent assembly pathway contributes to the formation of acentrosomal microtubule arrays in interphase Drosophila cells.

Rogers GC, Rusan NM, Peifer M, Rogers SL.

Mol Biol Cell. 2008 Jul;19(7):3163-78. doi: 10.1091/mbc.E07-10-1069. Epub 2008 May 7.

34.

Culture of Drosophila S2 cells and their use for RNAi-mediated loss-of-function studies and immunofluorescence microscopy.

Rogers SL, Rogers GC.

Nat Protoc. 2008;3(4):606-11. doi: 10.1038/nprot.2008.18.

PMID:
18388942
35.

Three microtubule severing enzymes contribute to the "Pacman-flux" machinery that moves chromosomes.

Zhang D, Rogers GC, Buster DW, Sharp DJ.

J Cell Biol. 2007 Apr 23;177(2):231-42.

36.

Microtubule binding by dynactin is required for microtubule organization but not cargo transport.

Kim H, Ling SC, Rogers GC, Kural C, Selvin PR, Rogers SL, Gelfand VI.

J Cell Biol. 2007 Feb 26;176(5):641-51.

37.

Spindle microtubules in flux.

Rogers GC, Rogers SL, Sharp DJ.

J Cell Sci. 2005 Mar 15;118(Pt 6):1105-16. Erratum in: J Cell Sci. 2005 May 15;118(Pt 10):2341-3.

38.

Functionally distinct kinesin-13 family members cooperate to regulate microtubule dynamics during interphase.

Mennella V, Rogers GC, Rogers SL, Buster DW, Vale RD, Sharp DJ.

Nat Cell Biol. 2005 Mar;7(3):235-45. Epub 2005 Feb 20.

PMID:
15723056
39.

A Kin I-dependent Pacman-flux mechanism for anaphase A.

Sharp DJ, Rogers GC.

Cell Cycle. 2004 Jun;3(6):707-10. Epub 2004 Jun 20. Review.

PMID:
15153812
40.

Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase.

Rogers GC, Rogers SL, Schwimmer TA, Ems-McClung SC, Walczak CE, Vale RD, Scholey JM, Sharp DJ.

Nature. 2004 Jan 22;427(6972):364-70. Epub 2003 Dec 14.

PMID:
14681690
41.

The chromokinesin, KLP3A, dives mitotic spindle pole separation during prometaphase and anaphase and facilitates chromatid motility.

Kwon M, Morales-Mulia S, Brust-Mascher I, Rogers GC, Sharp DJ, Scholey JM.

Mol Biol Cell. 2004 Jan;15(1):219-33. Epub 2003 Oct 3.

42.

Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle.

Rogers SL, Rogers GC, Sharp DJ, Vale RD.

J Cell Biol. 2002 Sep 2;158(5):873-84. Epub 2002 Sep 3.

43.

Mitosis, microtubules, and the matrix.

Scholey JM, Rogers GC, Sharp DJ.

J Cell Biol. 2001 Jul 23;154(2):261-6. Review.

44.

Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos.

Sharp DJ, Rogers GC, Scholey JM.

Nat Cell Biol. 2000 Dec;2(12):922-30.

PMID:
11146657
45.

Roles of two homotetrameric kinesins in sea urchin embryonic cell division.

Chui KK, Rogers GC, Kashina AM, Wedaman KP, Sharp DJ, Nguyen DT, Wilt F, Scholey JM.

J Biol Chem. 2000 Dec 1;275(48):38005-11.

46.

Microtubule motors in mitosis.

Sharp DJ, Rogers GC, Scholey JM.

Nature. 2000 Sep 7;407(6800):41-7. Review.

PMID:
10993066
47.

A kinesin-related protein, KRP(180), positions prometaphase spindle poles during early sea urchin embryonic cell division.

Rogers GC, Chui KK, Lee EW, Wedaman KP, Sharp DJ, Holland G, Morris RL, Scholey JM.

J Cell Biol. 2000 Aug 7;150(3):499-512.

48.

Roles of motor proteins in building microtubule-based structures: a basic principle of cellular design.

Sharp DJ, Rogers GC, Scholey JM.

Biochim Biophys Acta. 2000 Mar 17;1496(1):128-41. Review.

49.

Functional coordination of three mitotic motors in Drosophila embryos.

Sharp DJ, Brown HM, Kwon M, Rogers GC, Holland G, Scholey JM.

Mol Biol Cell. 2000 Jan;11(1):241-53.

50.

Identification of kinesin-C, a calmodulin-binding carboxy-terminal kinesin in animal (Strongylocentrotus purpuratus) cells.

Rogers GC, Hart CL, Wedaman KP, Scholey JM.

J Mol Biol. 1999 Nov 19;294(1):1-8.

PMID:
10556023

Supplemental Content

Loading ...
Support Center