Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 11

1.

Unveiling the Metabolic Changes on Muscle Cell Metabolism Underlying p-Phenylenediamine Toxicity.

Marín de Mas I, Marín S, Pachón G, Rodríguez-Prados JC, Vizán P, Centelles JJ, Tauler R, Azqueta A, Selivanov V, López de Ceraín A, Cascante M.

Front Mol Biosci. 2017 Mar 6;4:8. doi: 10.3389/fmolb.2017.00008. eCollection 2017.

2.

Phosphoproteomic comparison of Pik3ca and Pten signalling identifies the nucleotidase NT5C as a novel AKT substrate.

Moniz LS, Surinova S, Ghazaly E, Velasco LG, Haider S, Rodríguez-Prados JC, Berenjeno IM, Chelala C, Vanhaesebroeck B.

Sci Rep. 2017 Jan 6;7:39985. doi: 10.1038/srep39985.

3.

Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors.

Casado P, Alcolea MP, Iorio F, Rodríguez-Prados JC, Vanhaesebroeck B, Saez-Rodriguez J, Joel S, Cutillas PR.

Genome Biol. 2013 Apr 29;14(4):R37. doi: 10.1186/gb-2013-14-4-r37.

4.

Kinase-substrate enrichment analysis provides insights into the heterogeneity of signaling pathway activation in leukemia cells.

Casado P, Rodriguez-Prados JC, Cosulich SC, Guichard S, Vanhaesebroeck B, Joel S, Cutillas PR.

Sci Signal. 2013 Mar 26;6(268):rs6. doi: 10.1126/scisignal.2003573.

PMID:
23532336
5.

Global profiling of protein kinase activities in cancer cells by mass spectrometry.

Beltran L, Casado P, Rodríguez-Prados JC, Cutillas PR.

J Proteomics. 2012 Dec 21;77:492-503. doi: 10.1016/j.jprot.2012.09.029. Epub 2012 Oct 4.

PMID:
23041048
6.

Phosphoproteomic analysis of leukemia cells under basal and drug-treated conditions identifies markers of kinase pathway activation and mechanisms of resistance.

Alcolea MP, Casado P, Rodríguez-Prados JC, Vanhaesebroeck B, Cutillas PR.

Mol Cell Proteomics. 2012 Aug;11(8):453-66. doi: 10.1074/mcp.M112.017483. Epub 2012 Apr 29.

7.

Relevance of the MEK/ERK signaling pathway in the metabolism of activated macrophages: a metabolomic approach.

Través PG, de Atauri P, Marín S, Pimentel-Santillana M, Rodríguez-Prados JC, Marín de Mas I, Selivanov VA, Martín-Sanz P, Boscá L, Cascante M.

J Immunol. 2012 Feb 1;188(3):1402-10. doi: 10.4049/jimmunol.1101781. Epub 2011 Dec 21.

8.

Characterization of a TiO₂ enrichment method for label-free quantitative phosphoproteomics.

Montoya A, Beltran L, Casado P, Rodríguez-Prados JC, Cutillas PR.

Methods. 2011 Aug;54(4):370-8. doi: 10.1016/j.ymeth.2011.02.004. Epub 2011 Feb 18.

9.

Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation.

Rodríguez-Prados JC, Través PG, Cuenca J, Rico D, Aragonés J, Martín-Sanz P, Cascante M, Boscá L.

J Immunol. 2010 Jul 1;185(1):605-14. doi: 10.4049/jimmunol.0901698. Epub 2010 May 24.

10.

In silico strategy to rationally engineer metabolite production: A case study for threonine in Escherichia coli.

Rodríguez-Prados JC, de Atauri P, Maury J, Ortega F, Portais JC, Chassagnole C, Acerenza L, Lindley ND, Cascante M.

Biotechnol Bioeng. 2009 Jun 15;103(3):609-20. doi: 10.1002/bit.22271.

PMID:
19219914
11.

Quantification of intracellular phosphorylated carbohydrates in HT29 human colon adenocarcinoma cell line using liquid chromatography-electrospray ionization tandem mass spectrometry.

Vizán P, Alcarraz-Vizán G, Díaz-Moralli S, Rodríguez-Prados JC, Zanuy M, Centelles JJ, Jáuregui O, Cascante M.

Anal Chem. 2007 Jul 1;79(13):5000-5. Epub 2007 May 25.

PMID:
17523595

Supplemental Content

Loading ...
Support Center