Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 66

1.

"Candidatus Thermonerobacter thiotrophicus," A Non-phototrophic Member of the Bacteroidetes/Chlorobi With Dissimilatory Sulfur Metabolism in Hot Spring Mat Communities.

Thiel V, Garcia Costas AM, Fortney NW, Martinez JN, Tank M, Roden EE, Boyd ES, Ward DM, Hanada S, Bryant DA.

Front Microbiol. 2019 Jan 9;9:3159. doi: 10.3389/fmicb.2018.03159. eCollection 2018.

2.

Extracellular Electron Transfer May Be an Overlooked Contribution to Pelagic Respiration in Humic-Rich Freshwater Lakes.

He S, Lau MP, Linz AM, Roden EE, McMahon KD.

mSphere. 2019 Jan 23;4(1). pii: e00436-18. doi: 10.1128/mSphere.00436-18.

3.

Stability of Ferrihydrite-Humic Acid Coprecipitates under Iron-Reducing Conditions.

Mejia J, He S, Yang Y, Ginder-Vogel M, Roden EE.

Environ Sci Technol. 2018 Nov 20;52(22):13174-13183. doi: 10.1021/acs.est.8b03615. Epub 2018 Nov 8.

PMID:
30354092
4.

Investigating the Composition and Metabolic Potential of Microbial Communities in Chocolate Pots Hot Springs.

Fortney NW, He S, Converse BJ, Boyd ES, Roden EE.

Front Microbiol. 2018 Sep 7;9:2075. doi: 10.3389/fmicb.2018.02075. eCollection 2018.

5.

Electron acceptor availability alters carbon and energy metabolism in a thermoacidophile.

Amenabar MJ, Colman DR, Poudel S, Roden EE, Boyd ES.

Environ Microbiol. 2018 Jul;20(7):2523-2537. doi: 10.1111/1462-2920.14270. Epub 2018 Aug 16.

PMID:
29749696
6.

Dual Role of Humic Substances As Electron Donor and Shuttle for Dissimilatory Iron Reduction.

Stern N, Mejia J, He S, Yang Y, Ginder-Vogel M, Roden EE.

Environ Sci Technol. 2018 May 15;52(10):5691-5699. doi: 10.1021/acs.est.7b06574. Epub 2018 Apr 24.

7.

Stable Isotope Probing for Microbial Iron Reduction in Chocolate Pots Hot Spring, Yellowstone National Park.

Fortney NW, He S, Kulkarni A, Friedrich MW, Holz C, Boyd ES, Roden EE.

Appl Environ Microbiol. 2018 May 17;84(11). pii: e02894-17. doi: 10.1128/AEM.02894-17. Print 2018 Jun 1.

8.

Comparative Genomic Analysis of Neutrophilic Iron(II) Oxidizer Genomes for Candidate Genes in Extracellular Electron Transfer.

He S, Barco RA, Emerson D, Roden EE.

Front Microbiol. 2017 Aug 21;8:1584. doi: 10.3389/fmicb.2017.01584. eCollection 2017.

9.

Microbial substrate preference dictated by energy demand, not supply.

Amenabar MJ, Shock EL, Roden EE, Peters JW, Boyd ES.

Nat Geosci. 2017 Aug;10(8):577-581. doi: 10.1038/ngeo2978. Epub 2017 Jul 3.

10.

Colonization Habitat Controls Biomass, Composition, and Metabolic Activity of Attached Microbial Communities in the Columbia River Hyporheic Corridor.

Stern N, Ginder-Vogel M, Stegen JC, Arntzen E, Kennedy DW, Larget BR, Roden EE.

Appl Environ Microbiol. 2017 Aug 1;83(16). pii: e00260-17. doi: 10.1128/AEM.00260-17. Print 2017 Aug 15.

11.

Biogeochemical controls on mercury methylation in the Allequash Creek wetland.

Creswell JE, Shafer MM, Babiarz CL, Tan SZ, Musinsky AL, Schott TH, Roden EE, Armstrong DE.

Environ Sci Pollut Res Int. 2017 Jun;24(18):15325-15339. doi: 10.1007/s11356-017-9094-2. Epub 2017 May 13.

PMID:
28502050
12.

Microbial acceleration of aerobic pyrite oxidation at circumneutral pH.

Percak-Dennett E, He S, Converse B, Konishi H, Xu H, Corcoran A, Noguera D, Chan C, Bhattacharyya A, Borch T, Boyd E, Roden EE.

Geobiology. 2017 Sep;15(5):690-703. doi: 10.1111/gbi.12241. Epub 2017 Apr 27.

PMID:
28452176
13.

Iron Isotope Fractionations Reveal a Finite Bioavailable Fe Pool for Structural Fe(III) Reduction in Nontronite.

Shi B, Liu K, Wu L, Li W, Smeaton CM, Beard BL, Johnson CM, Roden EE, Van Cappellen P.

Environ Sci Technol. 2016 Aug 16;50(16):8661-9. doi: 10.1021/acs.est.6b02019. Epub 2016 Jul 3.

PMID:
27291525
14.

Substrate preference, uptake kinetics and bioenergetics in a facultatively autotrophic, thermoacidophilic crenarchaeote.

Urschel MR, Hamilton TL, Roden EE, Boyd ES.

FEMS Microbiol Ecol. 2016 May;92(5):fiw069. doi: 10.1093/femsec/fiw069. Epub 2016 Mar 31.

PMID:
27037359
15.

Influence of Oxygen and Nitrate on Fe (Hydr)oxide Mineral Transformation and Soil Microbial Communities during Redox Cycling.

Mejia J, Roden EE, Ginder-Vogel M.

Environ Sci Technol. 2016 Apr 5;50(7):3580-8. doi: 10.1021/acs.est.5b05519. Epub 2016 Mar 21.

16.

Metagenomic Analyses of the Autotrophic Fe(II)-Oxidizing, Nitrate-Reducing Enrichment Culture KS.

He S, Tominski C, Kappler A, Behrens S, Roden EE.

Appl Environ Microbiol. 2016 Apr 18;82(9):2656-2668. doi: 10.1128/AEM.03493-15. Print 2016 May.

17.

Microbial Fe(III) oxide reduction potential in Chocolate Pots hot spring, Yellowstone National Park.

Fortney NW, He S, Converse BJ, Beard BL, Johnson CM, Boyd ES, Roden EE.

Geobiology. 2016 May;14(3):255-75. doi: 10.1111/gbi.12173. Epub 2016 Jan 11.

PMID:
26750514
18.

The Effect of Natural Organic Matter on Mercury Methylation by Desulfobulbus propionicus 1pr3.

Moreau JW, Gionfriddo CM, Krabbenhoft DP, Ogorek JM, DeWild JF, Aiken GR, Roden EE.

Front Microbiol. 2015 Dec 18;6:1389. doi: 10.3389/fmicb.2015.01389. eCollection 2015.

19.

Aerobic and Anaerobic Thiosulfate Oxidation by a Cold-Adapted, Subglacial Chemoautotroph.

Harrold ZR, Skidmore ML, Hamilton TL, Desch L, Amada K, van Gelder W, Glover K, Roden EE, Boyd ES.

Appl Environ Microbiol. 2015 Dec 28;82(5):1486-95. doi: 10.1128/AEM.03398-15.

20.

Microbial mineral colonization across a subsurface redox transition zone.

Converse BJ, McKinley JP, Resch CT, Roden EE.

Front Microbiol. 2015 Aug 28;6:858. doi: 10.3389/fmicb.2015.00858. eCollection 2015.

21.

Potential for microbial oxidation of ferrous iron in basaltic glass.

Xiong MY, Shelobolina ES, Roden EE.

Astrobiology. 2015 May;15(5):331-40. doi: 10.1089/ast.2014.1233. Epub 2015 Apr 27.

PMID:
25915449
22.

A new analysis of Mars "Special Regions": findings of the second MEPAG Special Regions Science Analysis Group (SR-SAG2).

Rummel JD, Beaty DW, Jones MA, Bakermans C, Barlow NG, Boston PJ, Chevrier VF, Clark BC, de Vera JP, Gough RV, Hallsworth JE, Head JW, Hipkin VJ, Kieft TL, McEwen AS, Mellon MT, Mikucki JA, Nicholson WL, Omelon CR, Peterson R, Roden EE, Sherwood Lollar B, Tanaka KL, Viola D, Wray JJ.

Astrobiology. 2014 Nov;14(11):887-968. doi: 10.1089/ast.2014.1227.

PMID:
25401393
23.

Geochemical and microbiological responses to oxidant introduction into reduced subsurface sediment from the Hanford 300 Area, Washington.

Percak-Dennett EM, Roden EE.

Environ Sci Technol. 2014 Aug 19;48(16):9197-204. doi: 10.1021/es5009856. Epub 2014 Jul 25.

PMID:
25014732
24.

Fe-phyllosilicate redox cycling organisms from a redox transition zone in Hanford 300 Area sediments.

Benzine J, Shelobolina E, Xiong MY, Kennedy DW, McKinley JP, Lin X, Roden EE.

Front Microbiol. 2013 Dec 16;4:388. doi: 10.3389/fmicb.2013.00388. eCollection 2013.

25.

Iron isotope characteristics of Hot Springs at Chocolate Pots, Yellowstone National Park.

Wu L, Brucker RP, Beard BL, Roden EE, Johnson CM.

Astrobiology. 2013 Nov;13(11):1091-101. doi: 10.1089/ast.2013.0996. Epub 2013 Nov 12.

PMID:
24219169
26.

U(VI) reduction in sulfate-reducing subsurface sediments amended with ethanol or acetate.

Converse BJ, Wu T, Findlay RH, Roden EE.

Appl Environ Microbiol. 2013 Jul;79(13):4173-7. doi: 10.1128/AEM.00420-13. Epub 2013 Apr 26.

27.

Microbial iron-redox cycling in subsurface environments.

Roden EE.

Biochem Soc Trans. 2012 Dec 1;40(6):1249-56. doi: 10.1042/BST20120202. Review.

PMID:
23176463
28.

Isolation and microbial reduction of Fe(III) phyllosilicates from subsurface sediments.

Wu T, Shelobolina E, Xu H, Konishi H, Kukkadapu R, Roden EE.

Environ Sci Technol. 2012 Nov 6;46(21):11618-26. doi: 10.1021/es302639n. Epub 2012 Oct 25.

PMID:
23061986
29.

The Microbial Ferrous Wheel in a Neutral pH Groundwater Seep.

Roden EE, McBeth JM, Blöthe M, Percak-Dennett EM, Fleming EJ, Holyoke RR, Luther GW 3rd, Emerson D, Schieber J.

Front Microbiol. 2012 May 22;3:172. doi: 10.3389/fmicb.2012.00172. eCollection 2012.

30.

Lake microbial communities are resilient after a whole-ecosystem disturbance.

Shade A, Read JS, Youngblut ND, Fierer N, Knight R, Kratz TK, Lottig NR, Roden EE, Stanley EH, Stombaugh J, Whitaker RJ, Wu CH, McMahon KD.

ISME J. 2012 Dec;6(12):2153-67. doi: 10.1038/ismej.2012.56. Epub 2012 Jun 28.

31.

Redox behavior of uranium at the nanoporous aluminum oxide-water interface: implications for uranium remediation.

Jung HB, Boyanov MI, Konishi H, Sun Y, Mishra B, Kemner KM, Roden EE, Xu H.

Environ Sci Technol. 2012 Jul 3;46(13):7301-9. doi: 10.1021/es2044163. Epub 2012 Jun 18.

PMID:
22681597
32.

Enhanced growth of Acidovorax sp. strain 2AN during nitrate-dependent Fe(II) oxidation in batch and continuous-flow systems.

Chakraborty A, Roden EE, Schieber J, Picardal F.

Appl Environ Microbiol. 2011 Dec;77(24):8548-56. doi: 10.1128/AEM.06214-11. Epub 2011 Oct 14.

33.

Repeated anaerobic microbial redox cycling of iron.

Coby AJ, Picardal F, Shelobolina E, Xu H, Roden EE.

Appl Environ Microbiol. 2011 Sep;77(17):6036-42. doi: 10.1128/AEM.00276-11. Epub 2011 Jul 8.

34.

Microbial physiology-based model of ethanol metabolism in subsurface sediments.

Jin Q, Roden EE.

J Contam Hydrol. 2011 Jul 1;125(1-4):1-12. doi: 10.1016/j.jconhyd.2011.04.002. Epub 2011 Apr 27.

PMID:
21652106
35.

16S rRNA gene microarray analysis of microbial communities in ethanol-stimulated subsurface sediment.

Mohanty SR, Kollah B, Brodie EL, Hazen TC, Roden EE.

Microbes Environ. 2011;26(3):261-5. Epub 2011 May 11.

36.

Iron isotope fractionation during microbial dissimilatory iron oxide reduction in simulated Archaean seawater.

Percak-Dennett EM, Beard BL, Xu H, Konishi H, Johnson CM, Roden EE.

Geobiology. 2011 May;9(3):205-20. doi: 10.1111/j.1472-4669.2011.00277.x.

PMID:
21504536
37.

Stable iron isotope fractionation between aqueous Fe(II) and hydrous ferric oxide.

Wu L, Beard BL, Roden EE, Johnson CM.

Environ Sci Technol. 2011 Mar 1;45(5):1847-52. doi: 10.1021/es103171x. Epub 2011 Feb 4.

PMID:
21294566
38.

Thermodynamics of microbial growth coupled to metabolism of glucose, ethanol, short-chain organic acids, and hydrogen.

Roden EE, Jin Q.

Appl Environ Microbiol. 2011 Mar;77(5):1907-9. doi: 10.1128/AEM.02425-10. Epub 2011 Jan 7.

39.

Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks.

Tangalos GE, Beard BL, Johnson CM, Alpers CN, Shelobolina ES, Xu H, Konishi H, Roden EE.

Geobiology. 2010 Jun 1;8(3):197-208. doi: 10.1111/j.1472-4669.2010.00237.x. Epub 2010 Mar 30.

PMID:
20374296
40.

Composition and activity of an autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture.

Blöthe M, Roden EE.

Appl Environ Microbiol. 2009 Nov;75(21):6937-40. doi: 10.1128/AEM.01742-09. Epub 2009 Sep 11.

41.

U(VI) sequestration in hydroxyapatite produced by microbial glycerol 3-phosphate metabolism.

Shelobolina ES, Konishi H, Xu H, Roden EE.

Appl Environ Microbiol. 2009 Sep;75(18):5773-8. doi: 10.1128/AEM.00628-09. Epub 2009 Jul 24.

42.

Microbial iron redox cycling in a circumneutral-pH groundwater seep.

Blöthe M, Roden EE.

Appl Environ Microbiol. 2009 Jan;75(2):468-73. doi: 10.1128/AEM.01817-08. Epub 2008 Dec 1.

43.

Biogeochemical processes in ethanol stimulated uranium-contaminated subsurface sediments.

Mohanty SR, Kollah B, Hedrick DB, Peacock AD, Kukkadapu RK, Roden EE.

Environ Sci Technol. 2008 Jun 15;42(12):4384-90.

PMID:
18605559
44.

Reactive transport of uranium(VI) and phosphate in a goethite-coated sand column: an experimental study.

Cheng T, Barnett MO, Roden EE, Zhuang J.

Chemosphere. 2007 Jul;68(7):1218-23. Epub 2007 Mar 8.

PMID:
17349670
45.

Effects of solid-to-solution ratio on uranium(VI) adsorption and its implications.

Cheng T, Barnett MO, Roden EE, Zhuang J.

Environ Sci Technol. 2006 May 15;40(10):3243-7.

PMID:
16749688
46.

A simple, efficient method for the separation of humic substances and DNA from environmental samples.

Jackson CR, Harper JP, Willoughby D, Roden EE, Churchill PF.

Appl Environ Microbiol. 1997 Dec;63(12):4993-5.

47.

Anaerobic redox cycling of iron by freshwater sediment microorganisms.

Weber KA, Urrutia MM, Churchill PF, Kukkadapu RK, Roden EE.

Environ Microbiol. 2006 Jan;8(1):100-13.

PMID:
16343326
48.

Coupled Fe(II)-Fe(III) electron and atom exchange as a mechanism for Fe isotope fractionation during dissimilatory iron oxide reduction.

Crosby HA, Johnson CM, Roden EE, Beard BL.

Environ Sci Technol. 2005 Sep 1;39(17):6698-704.

PMID:
16190229
49.

Chemical reduction of U(VI) by Fe(II) at the solid-water interface using natural and synthetic Fe(III) oxides.

Jeon BH, Dempsey BA, Burgos WD, Barnett MO, Roden EE.

Environ Sci Technol. 2005 Aug 1;39(15):5642-9.

PMID:
16124298
50.

Effect of watershed parameters on mercury distribution in different environmental compartments in the Mobile Alabama River Basin, USA.

Warner KA, Bonzongo JC, Roden EE, Ward GM, Green AC, Chaubey I, Lyons WB, Arrington DA.

Sci Total Environ. 2005 Jul 15;347(1-3):187-207.

PMID:
16084978

Supplemental Content

Loading ...
Support Center