Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 237

1.

Quantification of Coenzyme A in Cells and Tissues.

Frank MW, Subramanian C, Rock CO, Jackowski S.

J Vis Exp. 2019 Sep 27;(151). doi: 10.3791/60182.

PMID:
31609347
2.

A fatty acid binding protein of Streptococcus pneumoniae facilitates the acquisition of host polyunsaturated fatty acids.

Gullett JM, Cuypers MG, Frank MW, White SW, Rock CO.

J Biol Chem. 2019 Sep 17. pii: jbc.RA119.010659. doi: 10.1074/jbc.RA119.010659. [Epub ahead of print]

3.

Disruption of Glycolysis by Nutritional Immunity Activates a Two-Component System That Coordinates a Metabolic and Antihost Response by Staphylococcus aureus.

Párraga Solórzano PK, Yao J, Rock CO, Kehl-Fie TE.

MBio. 2019 Aug 6;10(4). pii: e01321-19. doi: 10.1128/mBio.01321-19.

4.

Oleate hydratase from Staphylococcus aureus protects against palmitoleic acid, the major antimicrobial fatty acid produced by mammalian skin.

Subramanian C, Frank MW, Batte JL, Whaley SG, Rock CO.

J Biol Chem. 2019 Jun 7;294(23):9285-9294. doi: 10.1074/jbc.RA119.008439. Epub 2019 Apr 24.

PMID:
31018965
5.

Human pantothenate kinase 4 is a pseudo-pantothenate kinase.

Yao J, Subramanian C, Rock CO, Jackowski S.

Protein Sci. 2019 Jun;28(6):1031-1047. doi: 10.1002/pro.3611. Epub 2019 Apr 17.

PMID:
30927326
6.

Acyl-chain selectivity and physiological roles of Staphylococcus aureus fatty acid-binding proteins.

Cuypers MG, Subramanian C, Gullett JM, Frank MW, White SW, Rock CO.

J Biol Chem. 2019 Jan 4;294(1):38-49. doi: 10.1074/jbc.RA118.006160. Epub 2018 Nov 14.

7.

A therapeutic approach to pantothenate kinase associated neurodegeneration.

Sharma LK, Subramanian C, Yun MK, Frank MW, White SW, Rock CO, Lee RE, Jackowski S.

Nat Commun. 2018 Oct 23;9(1):4399. doi: 10.1038/s41467-018-06703-2.

8.

Therapeutic Targets in Chlamydial Fatty Acid and Phospholipid Synthesis.

Yao J, Rock CO.

Front Microbiol. 2018 Sep 25;9:2291. doi: 10.3389/fmicb.2018.02291. eCollection 2018. Review.

9.

The Structural and Functional Basis for Recurring Sulfa Drug Resistance Mutations in Staphylococcus aureus Dihydropteroate Synthase.

Griffith EC, Wallace MJ, Wu Y, Kumar G, Gajewski S, Jackson P, Phelps GA, Zheng Z, Rock CO, Lee RE, White SW.

Front Microbiol. 2018 Jul 17;9:1369. doi: 10.3389/fmicb.2018.01369. eCollection 2018.

10.

Role of Fatty Acid Kinase in Cellular Lipid Homeostasis and SaeRS-Dependent Virulence Factor Expression in Staphylococcus aureus.

Ericson ME, Subramanian C, Frank MW, Rock CO.

MBio. 2017 Aug 1;8(4). pii: e00988-17. doi: 10.1128/mBio.00988-17.

11.

A two-helix motif positions the lysophosphatidic acid acyltransferase active site for catalysis within the membrane bilayer.

Robertson RM, Yao J, Gajewski S, Kumar G, Martin EW, Rock CO, White SW.

Nat Struct Mol Biol. 2017 Aug;24(8):666-671. doi: 10.1038/nsmb.3436. Epub 2017 Jul 17.

12.

Exogenous fatty acid metabolism in bacteria.

Yao J, Rock CO.

Biochimie. 2017 Oct;141:30-39. doi: 10.1016/j.biochi.2017.06.015. Epub 2017 Jun 28. Review.

13.

Sonic Hedgehog Activates Phospholipase A2 to Enhance Smoothened Ciliary Translocation.

Arensdorf AM, Dillard ME, Menke JM, Frank MW, Rock CO, Ogden SK.

Cell Rep. 2017 Jun 6;19(10):2074-2087. doi: 10.1016/j.celrep.2017.05.033.

14.

Excess coenzyme A reduces skeletal muscle performance and strength in mice overexpressing human PANK2.

Corbin DR, Rehg JE, Shepherd DL, Stoilov P, Percifield RJ, Horner L, Frase S, Zhang YM, Rock CO, Hollander JM, Jackowski S, Leonardi R.

Mol Genet Metab. 2017 Apr;120(4):350-362. doi: 10.1016/j.ymgme.2017.02.001. Epub 2017 Feb 3.

15.

RelA Mutant Enterococcus faecium with Multiantibiotic Tolerance Arising in an Immunocompromised Host.

Honsa ES, Cooper VS, Mhaissen MN, Frank M, Shaker J, Iverson A, Rubnitz J, Hayden RT, Lee RE, Rock CO, Tuomanen EI, Wolf J, Rosch JW.

MBio. 2017 Jan 3;8(1). pii: e02124-16. doi: 10.1128/mBio.02124-16.

16.

T Cells Encountering Myeloid Cells Programmed for Amino Acid-dependent Immunosuppression Use Rictor/mTORC2 Protein for Proliferative Checkpoint Decisions.

Van de Velde LA, Subramanian C, Smith AM, Barron L, Qualls JE, Neale G, Alfonso-Pecchio A, Jackowski S, Rock CO, Wynn TA, Murray PJ.

J Biol Chem. 2017 Jan 6;292(1):15-30. doi: 10.1074/jbc.M116.766238. Epub 2016 Nov 30.

17.

Enoyl-Acyl Carrier Protein Reductase I (FabI) Is Essential for the Intracellular Growth of Listeria monocytogenes.

Yao J, Ericson ME, Frank MW, Rock CO.

Infect Immun. 2016 Nov 18;84(12):3597-3607. Print 2016 Dec.

18.

Pyruvate Oxidase as a Critical Link between Metabolism and Capsule Biosynthesis in Streptococcus pneumoniae.

Echlin H, Frank MW, Iverson A, Chang TC, Johnson MD, Rock CO, Rosch JW.

PLoS Pathog. 2016 Oct 19;12(10):e1005951. doi: 10.1371/journal.ppat.1005951. eCollection 2016 Oct.

19.

Bacterial fatty acid metabolism in modern antibiotic discovery.

Yao J, Rock CO.

Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Nov;1862(11):1300-1309. doi: 10.1016/j.bbalip.2016.09.014. Epub 2016 Sep 23. Review.

20.

Allosteric Regulation of Mammalian Pantothenate Kinase.

Subramanian C, Yun MK, Yao J, Sharma LK, Lee RE, White SW, Jackowski S, Rock CO.

J Biol Chem. 2016 Oct 14;291(42):22302-22314. Epub 2016 Aug 23.

21.

A Pathogen-Selective Antibiotic Minimizes Disturbance to the Microbiome.

Yao J, Carter RA, Vuagniaux G, Barbier M, Rosch JW, Rock CO.

Antimicrob Agents Chemother. 2016 Jun 20;60(7):4264-73. doi: 10.1128/AAC.00535-16. Print 2016 Jul.

22.

Resistance Mechanisms and the Future of Bacterial Enoyl-Acyl Carrier Protein Reductase (FabI) Antibiotics.

Yao J, Rock CO.

Cold Spring Harb Perspect Med. 2016 Mar 1;6(3):a027045. doi: 10.1101/cshperspect.a027045. Review.

23.

Biochemical Roles for Conserved Residues in the Bacterial Fatty Acid-binding Protein Family.

Broussard TC, Miller DJ, Jackson P, Nourse A, White SW, Rock CO.

J Biol Chem. 2016 Mar 18;291(12):6292-303. doi: 10.1074/jbc.M115.706820. Epub 2016 Jan 16.

24.

Activation of Exogenous Fatty Acids to Acyl-Acyl Carrier Protein Cannot Bypass FabI Inhibition in Neisseria.

Yao J, Bruhn DF, Frank MW, Lee RE, Rock CO.

J Biol Chem. 2016 Jan 1;291(1):171-81. doi: 10.1074/jbc.M115.699462. Epub 2015 Nov 13.

25.

Correction of a genetic deficiency in pantothenate kinase 1 using phosphopantothenate replacement therapy.

Zano SP, Pate C, Frank M, Rock CO, Jackowski S.

Mol Genet Metab. 2015 Dec;116(4):281-8. doi: 10.1016/j.ymgme.2015.10.011. Epub 2015 Oct 29.

26.

Maternal bile acid transporter deficiency promotes neonatal demise.

Zhang Y, Li F, Wang Y, Pitre A, Fang ZZ, Frank MW, Calabrese C, Krausz KW, Neale G, Frase S, Vogel P, Rock CO, Gonzalez FJ, Schuetz JD.

Nat Commun. 2015 Sep 29;6:8186. doi: 10.1038/ncomms9186.

27.

Chlamydia trachomatis Scavenges Host Fatty Acids for Phospholipid Synthesis via an Acyl-Acyl Carrier Protein Synthetase.

Yao J, Dodson VJ, Frank MW, Rock CO.

J Biol Chem. 2015 Sep 4;290(36):22163-73. doi: 10.1074/jbc.M115.671008. Epub 2015 Jul 20.

28.

Discovery of bacterial fatty acid synthase type II inhibitors using a novel cellular bioluminescent reporter assay.

Wallace J, Bowlin NO, Mills DM, Saenkham P, Kwasny SM, Opperman TJ, Williams JD, Rock CO, Bowlin TL, Moir DT.

Antimicrob Agents Chemother. 2015 Sep;59(9):5775-87. doi: 10.1128/AAC.00686-15. Epub 2015 Jul 13.

29.

Chlamydia trachomatis Relies on Autonomous Phospholipid Synthesis for Membrane Biogenesis.

Yao J, Cherian PT, Frank MW, Rock CO.

J Biol Chem. 2015 Jul 31;290(31):18874-88. doi: 10.1074/jbc.M115.657148. Epub 2015 May 20.

30.

How bacterial pathogens eat host lipids: implications for the development of fatty acid synthesis therapeutics.

Yao J, Rock CO.

J Biol Chem. 2015 Mar 6;290(10):5940-6. doi: 10.1074/jbc.R114.636241. Epub 2015 Feb 3. Review.

31.

A high-throughput screen reveals new small-molecule activators and inhibitors of pantothenate kinases.

Sharma LK, Leonardi R, Lin W, Boyd VA, Goktug A, Shelat AA, Chen T, Jackowski S, Rock CO.

J Med Chem. 2015 Feb 12;58(3):1563-8. doi: 10.1021/jm501585q. Epub 2015 Jan 21.

32.

A thioesterase bypasses the requirement for exogenous fatty acids in the plsX deletion of Streptococcus pneumoniae.

Parsons JB, Frank MW, Eleveld MJ, Schalkwijk J, Broussard TC, de Jonge MI, Rock CO.

Mol Microbiol. 2015 Apr;96(1):28-41. doi: 10.1111/mmi.12916. Epub 2015 Jan 30.

33.

FabH mutations confer resistance to FabF-directed antibiotics in Staphylococcus aureus.

Parsons JB, Yao J, Frank MW, Rock CO.

Antimicrob Agents Chemother. 2015 Feb;59(2):849-58. doi: 10.1128/AAC.04179-14. Epub 2014 Nov 17.

34.

Identification of a two-component fatty acid kinase responsible for host fatty acid incorporation by Staphylococcus aureus.

Parsons JB, Broussard TC, Bose JL, Rosch JW, Jackson P, Subramanian C, Rock CO.

Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10532-7. doi: 10.1073/pnas.1408797111. Epub 2014 Jul 7.

35.

Type II fatty acid synthesis is essential for the replication of Chlamydia trachomatis.

Yao J, Abdelrahman YM, Robertson RM, Cox JV, Belland RJ, White SW, Rock CO.

J Biol Chem. 2014 Aug 8;289(32):22365-76. doi: 10.1074/jbc.M114.584185. Epub 2014 Jun 23.

36.

Pank1 deletion in leptin-deficient mice reduces hyperglycaemia and hyperinsulinaemia and modifies global metabolism without affecting insulin resistance.

Leonardi R, Rock CO, Jackowski S.

Diabetologia. 2014 Jul;57(7):1466-75. doi: 10.1007/s00125-014-3245-5. Epub 2014 Apr 30.

37.

Discovery of novel bacterial elongation condensing enzyme inhibitors by virtual screening.

Zheng Z, Parsons JB, Tangallapally R, Zhang W, Rock CO, Lee RE.

Bioorg Med Chem Lett. 2014 Jun 1;24(11):2585-8. doi: 10.1016/j.bmcl.2014.03.033. Epub 2014 Apr 2.

38.

Incorporation of extracellular fatty acids by a fatty acid kinase-dependent pathway in Staphylococcus aureus.

Parsons JB, Frank MW, Jackson P, Subramanian C, Rock CO.

Mol Microbiol. 2014 Apr;92(2):234-45. doi: 10.1111/mmi.12556. Epub 2014 Mar 11.

39.

The identification, analysis and structure-based development of novel inhibitors of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase.

Yun MK, Hoagland D, Kumar G, Waddell MB, Rock CO, Lee RE, White SW.

Bioorg Med Chem. 2014 Apr 1;22(7):2157-65. doi: 10.1016/j.bmc.2014.02.022. Epub 2014 Feb 25.

40.

Phosphatidylglycerol homeostasis in glycerol-phosphate auxotrophs of Staphylococcus aureus.

Parsons JB, Yao J, Jackson P, Frank M, Rock CO.

BMC Microbiol. 2013 Nov 16;13:260. doi: 10.1186/1471-2180-13-260.

41.

Resistance to AFN-1252 arises from missense mutations in Staphylococcus aureus enoyl-acyl carrier protein reductase (FabI).

Yao J, Maxwell JB, Rock CO.

J Biol Chem. 2013 Dec 20;288(51):36261-71. doi: 10.1074/jbc.M113.512905. Epub 2013 Nov 4.

42.

Staphylococcus aureus fatty acid auxotrophs do not proliferate in mice.

Parsons JB, Frank MW, Rosch JW, Rock CO.

Antimicrob Agents Chemother. 2013 Nov;57(11):5729-32. doi: 10.1128/AAC.01038-13. Epub 2013 Aug 26.

43.

Bacterial lipids: metabolism and membrane homeostasis.

Parsons JB, Rock CO.

Prog Lipid Res. 2013 Jul;52(3):249-76. doi: 10.1016/j.plipres.2013.02.002. Epub 2013 Mar 14. Review.

44.

Perturbation of Staphylococcus aureus gene expression by the enoyl-acyl carrier protein reductase inhibitor AFN-1252.

Parsons JB, Kukula M, Jackson P, Pulse M, Simecka JW, Valtierra D, Weiss WJ, Kaplan N, Rock CO.

Antimicrob Agents Chemother. 2013 May;57(5):2182-90. doi: 10.1128/AAC.02307-12. Epub 2013 Mar 4.

45.

Preface: phospholipids and phospholipid metabolism.

Jackowski S, Rock CO.

Biochim Biophys Acta. 2013 Mar;1831(3):469-70. doi: 10.1016/j.bbalip.2013.01.001. No abstract available.

PMID:
23369660
46.

Phosphatidic acid synthesis in bacteria.

Yao J, Rock CO.

Biochim Biophys Acta. 2013 Mar;1831(3):495-502. doi: 10.1016/j.bbalip.2012.08.018. Epub 2012 Aug 30. Review.

47.

Sustained generation of nitric oxide and control of mycobacterial infection requires argininosuccinate synthase 1.

Qualls JE, Subramanian C, Rafi W, Smith AM, Balouzian L, DeFreitas AA, Shirey KA, Reutterer B, Kernbauer E, Stockinger S, Decker T, Miyairi I, Vogel SN, Salgame P, Rock CO, Murray PJ.

Cell Host Microbe. 2012 Sep 13;12(3):313-23. doi: 10.1016/j.chom.2012.07.012.

48.

Membrane disruption by antimicrobial fatty acids releases low-molecular-weight proteins from Staphylococcus aureus.

Parsons JB, Yao J, Frank MW, Jackson P, Rock CO.

J Bacteriol. 2012 Oct;194(19):5294-304. doi: 10.1128/JB.00743-12. Epub 2012 Jul 27.

49.

Will the initiator of fatty acid synthesis in Pseudomonas aeruginosa please stand up?

Zhang YM, Rock CO.

J Bacteriol. 2012 Oct;194(19):5159-61. doi: 10.1128/JB.01198-12. Epub 2012 Jul 20. No abstract available.

50.

Acyl-sulfamates target the essential glycerol-phosphate acyltransferase (PlsY) in Gram-positive bacteria.

Cherian PT, Yao J, Leonardi R, Maddox MM, Luna VA, Rock CO, Lee RE.

Bioorg Med Chem. 2012 Aug 15;20(16):4985-94. doi: 10.1016/j.bmc.2012.06.029. Epub 2012 Jun 23.

Supplemental Content

Support Center