Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 18

1.

Scale-Independent Microfluidic Production of Cationic Liposomal Adjuvants and Development of Enhanced Lymphatic Targeting Strategies.

Roces CB, Khadke S, Christensen D, Perrie Y.

Mol Pharm. 2019 Oct 7;16(10):4372-4386. doi: 10.1021/acs.molpharmaceut.9b00730. Epub 2019 Sep 6.

PMID:
31437396
2.

Formulation and manufacturing of lymphatic targeting liposomes using microfluidics.

Khadke S, Roces CB, Cameron A, Devitt A, Perrie Y.

J Control Release. 2019 Aug 10;307:211-220. doi: 10.1016/j.jconrel.2019.06.002. Epub 2019 Jun 3.

PMID:
31170464
3.

Lipid conjugation of TLR7 agonist Resiquimod ensures co-delivery with the liposomal Cationic Adjuvant Formulation 01 (CAF01) but does not enhance immunopotentiation compared to non-conjugated Resiquimod+CAF01.

Wilkinson A, Lattmann E, Roces CB, Pedersen GK, Christensen D, Perrie Y.

J Control Release. 2018 Dec 10;291:1-10. doi: 10.1016/j.jconrel.2018.10.002. Epub 2018 Oct 3.

PMID:
30291987
4.

Evaluation of the Potential of Lactobacillus paracasei Adjuncts for Flavor Compounds Development and Diversification in Short-Aged Cheddar Cheese.

Stefanovic E, Kilcawley KN, Roces C, Rea MC, O'Sullivan M, Sheehan JJ, McAuliffe O.

Front Microbiol. 2018 Jul 5;9:1506. doi: 10.3389/fmicb.2018.01506. eCollection 2018.

5.

Microfluidics based manufacture of liposomes simultaneously entrapping hydrophilic and lipophilic drugs.

Joshi S, Hussain MT, Roces CB, Anderluzzi G, Kastner E, Salmaso S, Kirby DJ, Perrie Y.

Int J Pharm. 2016 Sep 20. pii: S0378-5173(16)30848-1. doi: 10.1016/j.ijpharm.2016.09.027. [Epub ahead of print]

6.

Microfluidics based manufacture of liposomes simultaneously entrapping hydrophilic and lipophilic drugs.

Joshi S, Hussain MT, Roces CB, Anderluzzi G, Kastner E, Salmaso S, Kirby DJ, Perrie Y.

Int J Pharm. 2016 Nov 30;514(1):160-168. doi: 10.1016/j.ijpharm.2016.09.027.

PMID:
27863660
7.

Manufacturing Methods for Liposome Adjuvants.

Perrie Y, Kastner E, Khadke S, Roces CB, Stone P.

Methods Mol Biol. 2017;1494:127-144.

PMID:
27718190
8.

Rapid Quantification and Validation of Lipid Concentrations within Liposomes.

Roces CB, Kastner E, Stone P, Lowry D, Perrie Y.

Pharmaceutics. 2016 Sep 13;8(3). pii: E29. doi: 10.3390/pharmaceutics8030029.

9.

Nano-Self-Assemblies Based on Synthetic Analogues of Mycobacterial Monomycoloyl Glycerol and DDA: Supramolecular Structure and Adjuvant Efficacy.

Martin-Bertelsen B, Korsholm KS, Roces CB, Nielsen MH, Christensen D, Franzyk H, Yaghmur A, Foged C.

Mol Pharm. 2016 Aug 1;13(8):2771-81. doi: 10.1021/acs.molpharmaceut.6b00368. Epub 2016 Jul 20.

PMID:
27377146
10.

Reduced Binding of the Endolysin LysTP712 to Lactococcus lactis ΔftsH Contributes to Phage Resistance.

Roces C, Campelo AB, Escobedo S, Wegmann U, García P, Rodríguez A, Martínez B.

Front Microbiol. 2016 Feb 11;7:138. doi: 10.3389/fmicb.2016.00138. eCollection 2016.

11.

A bacteriocin gene cluster able to enhance plasmid maintenance in Lactococcus lactis.

Campelo AB, Roces C, Mohedano ML, López P, Rodríguez A, Martínez B.

Microb Cell Fact. 2014 May 28;13:77. doi: 10.1186/1475-2859-13-77.

12.

Lack of the host membrane protease FtsH hinders release of the Lactococcus lactis bacteriophage TP712.

Roces C, Wegmann U, Campelo AB, García P, Rodríguez A, Martínez B.

J Gen Virol. 2013 Dec;94(Pt 12):2814-8. doi: 10.1099/vir.0.057182-0. Epub 2013 Sep 9.

PMID:
24018314
13.

Cell Wall-active Bacteriocins and Their Applications Beyond Antibiotic Activity.

Roces C, Rodríguez A, Martínez B.

Probiotics Antimicrob Proteins. 2012 Dec;4(4):259-72. doi: 10.1007/s12602-012-9116-9.

PMID:
26782186
14.

The putative lactococcal extracytoplasmic function anti-sigma factor llmg2447 determines resistance to the cell wall-active bacteriocin lcn972.

Roces C, Pérez V, Campelo AB, Blanco D, Kok J, Kuipers OP, Rodríguez A, Martínez B.

Antimicrob Agents Chemother. 2012 Nov;56(11):5520-7. doi: 10.1128/AAC.01206-12. Epub 2012 Aug 13.

15.

Isolation of Lactococcus lactis mutants simultaneously resistant to the cell wall-active bacteriocin Lcn972, lysozyme, nisin, and bacteriophage c2.

Roces C, Courtin P, Kulakauskas S, Rodríguez A, Chapot-Chartier MP, Martínez B.

Appl Environ Microbiol. 2012 Jun;78(12):4157-63. doi: 10.1128/AEM.00795-12. Epub 2012 Apr 13.

16.

The Lcn972 bacteriocin-encoding plasmid pBL1 impairs cellobiose metabolism in Lactococcus lactis.

Campelo AB, Gaspar P, Roces C, Rodríguez A, Kok J, Kuipers OP, Neves AR, Martínez B.

Appl Environ Microbiol. 2011 Nov;77(21):7576-85. doi: 10.1128/AEM.06107-11. Epub 2011 Sep 2.

17.

Bacteriocins produced by wild Lactococcus lactis strains isolated from traditional, starter-free cheeses made of raw milk.

Alegría A, Delgado S, Roces C, López B, Mayo B.

Int J Food Microbiol. 2010 Sep 30;143(1-2):61-6. doi: 10.1016/j.ijfoodmicro.2010.07.029. Epub 2010 Jul 27.

PMID:
20708289
18.

Contribution of the CesR-regulated genes llmg0169 and llmg2164-2163 to Lactococcus lactis fitness.

Roces C, Campelo AB, Veiga P, Pinto JP, Rodríguez A, Martínez B.

Int J Food Microbiol. 2009 Aug 15;133(3):279-85. doi: 10.1016/j.ijfoodmicro.2009.06.002. Epub 2009 Jun 7.

PMID:
19559493

Supplemental Content

Support Center