Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 33

1.

Design of task-specific optical systems using broadband diffractive neural networks.

Luo Y, Mengu D, Yardimci NT, Rivenson Y, Veli M, Jarrahi M, Ozcan A.

Light Sci Appl. 2019 Dec 2;8:112. doi: 10.1038/s41377-019-0223-1. eCollection 2019.

2.

Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning.

Wu Y, Rivenson Y, Wang H, Luo Y, Ben-David E, Bentolila LA, Pritz C, Ozcan A.

Nat Methods. 2019 Dec;16(12):1323-1331. doi: 10.1038/s41592-019-0622-5. Epub 2019 Nov 4.

PMID:
31686039
3.

Deep learning in holography and coherent imaging.

Rivenson Y, Wu Y, Ozcan A.

Light Sci Appl. 2019 Sep 11;8:85. doi: 10.1038/s41377-019-0196-0. eCollection 2019.

4.

Pathological crystal imaging with single-shot computational polarized light microscopy.

Bai B, Wang H, Liu T, Rivenson Y, FitzGerald J, Ozcan A.

J Biophotonics. 2020 Jan;13(1):e201960036. doi: 10.1002/jbio.201960036. Epub 2019 Oct 9.

PMID:
31483948
5.

Resolution enhancement in scanning electron microscopy using deep learning.

de Haan K, Ballard ZS, Rivenson Y, Wu Y, Ozcan A.

Sci Rep. 2019 Aug 19;9(1):12050. doi: 10.1038/s41598-019-48444-2.

6.

Deep learning-based color holographic microscopy.

Liu T, Wei Z, Rivenson Y, de Haan K, Zhang Y, Wu Y, Ozcan A.

J Biophotonics. 2019 Nov;12(11):e201900107. doi: 10.1002/jbio.201900107. Epub 2019 Aug 1.

PMID:
31309728
7.

Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning.

Rivenson Y, Wang H, Wei Z, de Haan K, Zhang Y, Wu Y, Günaydın H, Zuckerman JE, Chong T, Sisk AE, Westbrook LM, Wallace WD, Ozcan A.

Nat Biomed Eng. 2019 Jun;3(6):466-477. doi: 10.1038/s41551-019-0362-y. Epub 2019 Mar 4.

PMID:
31142829
8.

Bright-field holography: cross-modality deep learning enables snapshot 3D imaging with bright-field contrast using a single hologram.

Wu Y, Luo Y, Chaudhari G, Rivenson Y, Calis A, de Haan K, Ozcan A.

Light Sci Appl. 2019 Mar 6;8:25. doi: 10.1038/s41377-019-0139-9. eCollection 2019.

9.

Deep learning-based super-resolution in coherent imaging systems.

Liu T, de Haan K, Rivenson Y, Wei Z, Zeng X, Zhang Y, Ozcan A.

Sci Rep. 2019 Mar 8;9(1):3926. doi: 10.1038/s41598-019-40554-1.

10.

Phase recovery and holographic image reconstruction using deep learning in neural networks.

Rivenson Y, Zhang Y, Günaydın H, Teng D, Ozcan A.

Light Sci Appl. 2018 Feb 23;7:17141. doi: 10.1038/lsa.2017.141. eCollection 2018.

11.

PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning.

Rivenson Y, Liu T, Wei Z, Zhang Y, de Haan K, Ozcan A.

Light Sci Appl. 2019 Feb 6;8:23. doi: 10.1038/s41377-019-0129-y. eCollection 2019.

12.

Deep learning enables cross-modality super-resolution in fluorescence microscopy.

Wang H, Rivenson Y, Jin Y, Wei Z, Gao R, Günaydın H, Bentolila LA, Kural C, Ozcan A.

Nat Methods. 2019 Jan;16(1):103-110. doi: 10.1038/s41592-018-0239-0. Epub 2018 Dec 17.

PMID:
30559434
13.

Accurate color imaging of pathology slides using holography and absorbance spectrum estimation of histochemical stains.

Zhang Y, Liu T, Huang Y, Teng D, Bian Y, Wu Y, Rivenson Y, Feizi A, Ozcan A.

J Biophotonics. 2019 Mar;12(3):e201800335. doi: 10.1002/jbio.201800335. Epub 2018 Nov 19.

PMID:
30353662
14.

A deep learning-enabled portable imaging flow cytometer for cost-effective, high-throughput, and label-free analysis of natural water samples.

Gӧrӧcs Z, Tamamitsu M, Bianco V, Wolf P, Roy S, Shindo K, Yanny K, Wu Y, Koydemir HC, Rivenson Y, Ozcan A.

Light Sci Appl. 2018 Sep 19;7:66. doi: 10.1038/s41377-018-0067-0. eCollection 2018.

15.

All-optical machine learning using diffractive deep neural networks.

Lin X, Rivenson Y, Yardimci NT, Veli M, Luo Y, Jarrahi M, Ozcan A.

Science. 2018 Sep 7;361(6406):1004-1008. doi: 10.1126/science.aat8084. Epub 2018 Jul 26.

PMID:
30049787
16.

3D imaging of optically cleared tissue using a simplified CLARITY method and on-chip microscopy.

Zhang Y, Shin Y, Sung K, Yang S, Chen H, Wang H, Teng D, Rivenson Y, Kulkarni RP, Ozcan A.

Sci Adv. 2017 Aug 11;3(8):e1700553. doi: 10.1126/sciadv.1700553. eCollection 2017 Aug.

17.

Sparsity-based multi-height phase recovery in holographic microscopy.

Rivenson Y, Wu Y, Wang H, Zhang Y, Feizi A, Ozcan A.

Sci Rep. 2016 Nov 30;6:37862. doi: 10.1038/srep37862.

18.

Phase retrieval deblurring for imaging of dense object within a low scattering soft biological tissue.

Sahlev MA, Rivenson Y, Meiri A, Zalevsky Z.

J Biomed Opt. 2016 Sep 1;21(9):96008. doi: 10.1117/1.JBO.21.9.096008.

19.

Quantitative Fluorescence Sensing Through Highly Autofluorescent, Scattering, and Absorbing Media Using Mobile Microscopy.

Göröcs Z, Rivenson Y, Ceylan Koydemir H, Tseng D, Troy TL, Demas V, Ozcan A.

ACS Nano. 2016 Sep 27;10(9):8989-99. doi: 10.1021/acsnano.6b05129. Epub 2016 Sep 19.

PMID:
27622866
20.

Compressive Fresnel holography approach for high-resolution viewpoint inference.

Rivenson Y, Shalev MA, Zalevsky Z.

Opt Lett. 2015 Dec 1;40(23):5606-9. doi: 10.1364/OL.40.005606.

PMID:
26625062
21.

Sparse synthetic aperture with Fresnel elements (S-SAFE) using digital incoherent holograms.

Kashter Y, Rivenson Y, Stern A, Rosen J.

Opt Express. 2015 Aug 10;23(16):20941-60. doi: 10.1364/OE.23.020941.

22.

Digital resampling diversity sparsity constrained-wavefield reconstruction using single-magnitude image.

Rivenson Y, Aviv Shalev M, Weiss A, Panet H, Zalevsky Z.

Opt Lett. 2015 Apr 15;40(8):1842-5. doi: 10.1364/OL.40.001842.

PMID:
25872088
23.

Quantization error and dynamic range considerations for compressive imaging systems design.

Stern A, Zeltzer Y, Rivenson Y.

J Opt Soc Am A Opt Image Sci Vis. 2013 Jun 1;30(6):1069-77. doi: 10.1364/JOSAA.30.001069.

PMID:
24323093
24.

Single channel in-line multimodal digital holography.

Rivenson Y, Katz B, Kelner R, Rosen J.

Opt Lett. 2013 Nov 15;38(22):4719-22. doi: 10.1364/OL.38.004719.

PMID:
24322115
25.

Reconstruction guarantees for compressive tomographic holography.

Rivenson Y, Stern A, Rosen J.

Opt Lett. 2013 Jul 15;38(14):2509-11. doi: 10.1364/OL.38.002509.

PMID:
23939096
26.

Compressive hyperspectral imaging by random separable projections in both the spatial and the spectral domains.

August Y, Vachman C, Rivenson Y, Stern A.

Appl Opt. 2013 Apr 1;52(10):D46-54. doi: 10.1364/AO.52.000D46.

PMID:
23545982
27.

Overview of compressive sensing techniques applied in holography [Invited].

Rivenson Y, Stern A, Javidi B.

Appl Opt. 2013 Jan 1;52(1):A423-32. doi: 10.1364/AO.52.00A423.

PMID:
23292420
28.

Improved depth resolution by single-exposure in-line compressive holography.

Rivenson Y, Stern A, Javidi B.

Appl Opt. 2013 Jan 1;52(1):A223-31. doi: 10.1364/AO.52.00A223.

PMID:
23292398
29.

Speckle denoising in digital holography by nonlocal means filtering.

Uzan A, Rivenson Y, Stern A.

Appl Opt. 2013 Jan 1;52(1):A195-200. doi: 10.1364/AO.52.00A195.

PMID:
23292394
30.

Recovery of partially occluded objects by applying compressive Fresnel holography.

Rivenson Y, Rot A, Balber S, Stern A, Rosen J.

Opt Lett. 2012 May 15;37(10):1757-9. doi: 10.1364/OL.37.001757.

PMID:
22627561
31.

Conditions for practicing compressive Fresnel holography.

Rivenson Y, Stern A.

Opt Lett. 2011 Sep 1;36(17):3365-7. doi: 10.1364/OL.36.003365.

PMID:
21886212
32.

Compressive multiple view projection incoherent holography.

Rivenson Y, Stern A, Rosen J.

Opt Express. 2011 Mar 28;19(7):6109-18. doi: 10.1364/OE.19.006109.

PMID:
21451634
33.

Single exposure super-resolution compressive imaging by double phase encoding.

Rivenson Y, Stern A, Javidi B.

Opt Express. 2010 Jul 5;18(14):15094-103. doi: 10.1364/OE.18.015094.

PMID:
20639994

Supplemental Content

Loading ...
Support Center