Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 59

1.

Predatory behavior changes with satiety or increased insulin levels in the praying mantis (Tenodera sinensis).

Bertsch DJ, Martin JP, Svenson GJ, Ritzmann RE.

J Exp Biol. 2019 Jun 11;222(Pt 11). pii: jeb197673. doi: 10.1242/jeb.197673.

2.

Mantisbot is a robotic model of visually guided motion in the praying mantis.

Szczecinski NS, Getsy AP, Martin JP, Ritzmann RE, Quinn RD.

Arthropod Struct Dev. 2017 Sep;46(5):736-751. doi: 10.1016/j.asd.2017.03.001. Epub 2017 Mar 28.

PMID:
28302586
3.

Spatial Navigation and the Central Complex: Sensory Acquisition, Orientation, and Motor Control.

Varga AG, Kathman ND, Martin JP, Guo P, Ritzmann RE.

Front Behav Neurosci. 2017 Jan 24;11:4. doi: 10.3389/fnbeh.2017.00004. eCollection 2017. Review.

4.

Cellular Basis of Head Direction and Contextual Cues in the Insect Brain.

Varga AG, Ritzmann RE.

Curr Biol. 2016 Jul 25;26(14):1816-28. doi: 10.1016/j.cub.2016.05.037. Epub 2016 Jul 7.

5.

Central-complex control of movement in the freely walking cockroach.

Martin JP, Guo P, Mu L, Harley CM, Ritzmann RE.

Curr Biol. 2015 Nov 2;25(21):2795-2803. doi: 10.1016/j.cub.2015.09.044. Epub 2015 Oct 22.

6.

Neuromechanical model of praying mantis explores the role of descending commands in pre-strike pivots.

Szczecinski NS, Martin JP, Bertsch DJ, Ritzmann RE, Quinn RD.

Bioinspir Biomim. 2015 Nov 18;10(6):065005. doi: 10.1088/1748-3190/10/6/065005.

PMID:
26580957
7.

How cockroaches exploit tactile boundaries to find new shelters.

Daltorio KA, Mirletz BT, Sterenstein A, Cheng JC, Watson A, Kesavan M, Bender JA, Martin J, Ritzmann RE, Quinn RD.

Bioinspir Biomim. 2015 Oct 23;10(6):065002. doi: 10.1088/1748-3190/10/6/065002.

PMID:
26495888
8.

Encoding wide-field motion and direction in the central complex of the cockroach Blaberus discoidalis.

Kathman ND, Kesavan M, Ritzmann RE.

J Exp Biol. 2014 Nov 15;217(Pt 22):4079-90. doi: 10.1242/jeb.112391. Epub 2014 Oct 2.

9.

Extracellular wire tetrode recording in brain of freely walking insects.

Guo P, Pollack AJ, Varga AG, Martin JP, Ritzmann RE.

J Vis Exp. 2014 Apr 1;(86). doi: 10.3791/51337.

10.

A neuromechanical simulation of insect walking and transition to turning of the cockroach Blaberus discoidalis.

Szczecinski NS, Brown AE, Bender JA, Quinn RD, Ritzmann RE.

Biol Cybern. 2014 Feb;108(1):1-21. doi: 10.1007/s00422-013-0573-3. Epub 2013 Nov 1.

PMID:
24178847
11.

Neural activity in the central complex of the cockroach brain is linked to turning behaviors.

Guo P, Ritzmann RE.

J Exp Biol. 2013 Mar 15;216(Pt 6):992-1002. doi: 10.1242/jeb.080473. Epub 2012 Nov 29.

12.

Deciding which way to go: how do insects alter movements to negotiate barriers?

Ritzmann RE, Harley CM, Daltorio KA, Tietz BR, Pollack AJ, Bender JA, Guo P, Horomanski AL, Kathman ND, Nieuwoudt C, Brown AE, Quinn RD.

Front Neurosci. 2012 Jul 6;6:97. doi: 10.3389/fnins.2012.00097. eCollection 2012.

13.

An implantable biofuel cell for a live insect.

Rasmussen M, Ritzmann RE, Lee I, Pollack AJ, Scherson D.

J Am Chem Soc. 2012 Jan 25;134(3):1458-60. doi: 10.1021/ja210794c. Epub 2012 Jan 13.

PMID:
22239249
14.

Kinematic and behavioral evidence for a distinction between trotting and ambling gaits in the cockroach Blaberus discoidalis.

Bender JA, Simpson EM, Tietz BR, Daltorio KA, Quinn RD, Ritzmann RE.

J Exp Biol. 2011 Jun 15;214(Pt 12):2057-64. doi: 10.1242/jeb.056481.

15.

Computer-assisted 3D kinematic analysis of all leg joints in walking insects.

Bender JA, Simpson EM, Ritzmann RE.

PLoS One. 2010 Oct 26;5(10):e13617. doi: 10.1371/journal.pone.0013617.

16.

Electrolytic lesions within central complex neuropils of the cockroach brain affect negotiation of barriers.

Harley CM, Ritzmann RE.

J Exp Biol. 2010 Aug 15;213(Pt 16):2851-64. doi: 10.1242/jeb.042499.

17.

Neural activity in the central complex of the insect brain is linked to locomotor changes.

Bender JA, Pollack AJ, Ritzmann RE.

Curr Biol. 2010 May 25;20(10):921-6. doi: 10.1016/j.cub.2010.03.054. Epub 2010 May 6.

18.

Visuomotor control: not so simple insect locomotion.

Ritzmann RE.

Curr Biol. 2010 Jan 12;20(1):R18-9. doi: 10.1016/j.cub.2009.11.012.

19.

Characterization of obstacle negotiation behaviors in the cockroach, Blaberus discoidalis.

Harley CM, English BA, Ritzmann RE.

J Exp Biol. 2009 May;212(Pt 10):1463-76. doi: 10.1242/jeb.028381.

20.

Adaptive motor behavior in insects.

Ritzmann RE, Büschges A.

Curr Opin Neurobiol. 2007 Dec;17(6):629-36. doi: 10.1016/j.conb.2008.01.001. Epub 2008 Mar 4. Review.

PMID:
18308559
21.

Multi-unit recording of antennal mechano-sensitive units in the central complex of the cockroach, Blaberus discoidalis.

Ritzmann RE, Ridgel AL, Pollack AJ.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Apr;194(4):341-60. doi: 10.1007/s00359-007-0310-2. Epub 2008 Jan 5.

PMID:
18180927
22.

Interaction between descending input and thoracic reflexes for joint coordination in cockroach: I. descending influence on thoracic sensory reflexes.

Mu L, Ritzmann RE.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Mar;194(3):283-98. Epub 2007 Dec 20.

PMID:
18094976
23.

Interaction between descending input and thoracic reflexes for joint coordination in cockroach. II comparative studies on tethered turning and searching.

Mu L, Ritzmann RE.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Mar;194(3):299-312. Epub 2007 Dec 20.

PMID:
18094975
24.

Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots.

Ritzmann RE, Quinn RD, Fischer MS.

Arthropod Struct Dev. 2004 Jul;33(3):361-79.

PMID:
18089044
25.

Arthropod locomotion systems: from biological materials and systems to robotics. Introduction.

Ritzmann RE, Gorb S, Quinn RD.

Arthropod Struct Dev. 2004 Jul;33(3):183-5. No abstract available.

PMID:
18089033
26.

Descending control of turning behavior in the cockroach, Blaberus discoidalis.

Ridgel AL, Alexander BE, Ritzmann RE.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2007 Apr;193(4):385-402. Epub 2006 Nov 23.

PMID:
17123086
27.

Kinematics and motor activity during tethered walking and turning in the cockroach, Blaberus discoidalis.

Mu L, Ritzmann RE.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 Nov;191(11):1037-54. Epub 2005 Nov 4.

PMID:
16258746
28.

Effects of neck and circumoesophageal connective lesions on posture and locomotion in the cockroach.

Ridgel AL, Ritzmann RE.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 Jun;191(6):559-73. Epub 2005 Apr 30.

PMID:
15864596
29.

Insights into age-related locomotor declines from studies of insects.

Ridgel AL, Ritzmann RE.

Ageing Res Rev. 2005 Jan;4(1):23-39. Epub 2004 Nov 25. Review.

PMID:
15619468
30.

Descending control of body attitude in the cockroach Blaberus discoidalis and its role in incline climbing.

Ritzmann RE, Pollack AJ, Archinal J, Ridgel AL, Quinn RD.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 Mar;191(3):253-64. Epub 2004 Aug 11.

PMID:
15309482
31.

Effects of aging on behavior and leg kinematics during locomotion in two species of cockroach.

Ridgel AL, Ritzmann RE, Schaefer PL.

J Exp Biol. 2003 Dec;206(Pt 24):4453-65.

32.

Control of climbing behavior in the cockroach, Blaberus discoidalis. II. Motor activities associated with joint movement.

Watson JT, Ritzmann RE, Pollack AJ.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002 Feb;188(1):55-69. Epub 2002 Jan 31.

PMID:
11935230
33.

Control of obstacle climbing in the cockroach, Blaberus discoidalis. I. Kinematics.

Watson JT, Ritzmann RE, Zill SN, Pollack AJ.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002 Feb;188(1):39-53. Epub 2002 Jan 31.

PMID:
11935229
34.

Descending influences on escape behavior and motor pattern in the cockroach.

Schaefer PL, Ritzmann RE.

J Neurobiol. 2001 Oct;49(1):9-28.

37.

Biorobotic approaches to the study of motor systems.

Beer RD, Chiel HJ, Quinn RD, Ritzmann RE.

Curr Opin Neurobiol. 1998 Dec;8(6):777-82. Review.

PMID:
9914233
38.
39.
40.
41.
42.

Dual pathways for tactile sensory information to thoracic interneurons in the cockroach.

Pollack AJ, Ritzmann RE, Watson JT.

J Neurobiol. 1995 Jan;26(1):33-46.

PMID:
7714524
43.

Responses of thoracic interneurons to tactile stimulation in cockroach, Periplaneta americana.

Ritzmann RE, Pollack AJ.

J Neurobiol. 1994 Sep;25(9):1113-28.

PMID:
7815067
44.

Motion analysis of escape movements evoked by tactile stimulation in the cockroach Periplaneta americana.

Schaefer PL, Kondagunta GV, Ritzmann RE.

J Exp Biol. 1994 May;190:287-94. No abstract available.

45.
48.

Convergence of multi-modal sensory signals at thoracic interneurons of the escape system of the cockroach, Periplaneta americana.

Ritzmann RE, Pollack AJ, Hudson SE, Hyvonen A.

Brain Res. 1991 Nov 1;563(1-2):175-83.

PMID:
1786531
49.

Supplemental Content

Loading ...
Support Center